On Leonid Gurvits’s Proof for Van der Waerden Conjecture
STCS Student Seminar
Speaker:
Uma Girish (Chennai Mathematical Institute
H1, SIPCOT IT Park
Siruseri, Kelambakkam
Chennai 603103)
Organiser:
Gunjan Kumar
Date:
Friday, 5 May 2017, 17:15 to 18:45
Venue:
A-201 (STCS Seminar Room)
(Scan to add to calendar)
Abstract:
The Van der Waerden Conjecture states that the permanent of a doubly stochastic matrix n x n matrix is at least n!/n^n, which is the case when each entry of the matrix is $1/n$. Though this conjecture is simple to state, it was unsolved for over fifty years until it was proved by Falikman (1979) and Egorychev (1980). In 2008, Leonid Gurvits came up with an amazingly short proof of the Van der Waerden Conjecture using H-stable polynomials. This proof will be the primary focus of this talk.
The proof is self-contained, and we will follow the exposition by Laurent and Schrijver.