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We initiate the study of the trade-off between the length of a probabilistically checkable proof of
proximity (PCPP) and the maximal soundness that can be guaranteed by a 3-query verifier with
oracle access to the proof. Our main observation is that a verifier limited to querying a short proof
cannot obtain the same soundness as that obtained by a verifier querying a long proof. Moreover,
we quantify the soundness deficiency as a function of the proof-length and show that any verifier
obtaining “best possible” soundness must query an exponentially long proof.

In terms of techniques, we focus on the special class of inspective verifiers that read at most 2
proof-bits per invocation. For such verifiers, we prove exponential length-soundness trade-offs that
are later on used to imply our main results for the case of general (i.e., not necessarily inspective)
verifiers. To prove the exponential trade-off for inspective verifiers, we show a connection between
PCPP proof length and property-testing query complexity that may be of independent interest.
The connection is that any linear property that can be verified with proofs of length � by linear
inspective verifiers must be testable with query complexity ≈ log �.
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1. INTRODUCTION

In this article we discuss the relationship between two basic parameters of
Probabilistically Checkable Proofs of Proximity (PCPPs)—their proof length
and soundness. PCPPs were simultaneously introduced by Ben-Sasson et al.
[2006] and (under the name assignment testers) by Dinur and Reingold [2006],
and a similar notion also appeared earlier in Szegedy [1999] and Ergün et al.
[2004]. The interest in PCPPs stems first and foremost from the role they
play within the proof of the celebrated PCP Theorem of Arora and Safra [1998]
and Arora et al. [1998]. All recent constructions of PCPs, starting with the
work of Ben-Sasson et al. [2006] and Dinur and Reingold [2006], use PCPPs
to simplify the proof of the PCP theorem and improve certain aspects of it,
most notably, to decrease the length of proofs as in Ben-Sasson et al. [2006],
Ben-Sasson and Sudan [2008], and Dinur [2007]. All previous proofs of the
PCP theorem implicitly use PCPPs and can be augmented to yield them. (See,
e.g., Ben-Sasson et al. [2006, Theorem 3.2] for a conversion of the original
PCP system of Arora and Safra [1998] and Arora et al. [1998] into a PCPP).
But PCPPs are also interesting beyond the scope of the PCP Theorem. They
can be used to transform any error correcting code into a locally testable one
and to construct “relaxed” locally decodable codes [Ben-Sasson et al. 2006].
Additionally, as shown by Fischer and Fortnow [2006], and Guruswami and
Rudra [2005], they have applications to questions in the theory of “tolerant”
property testing that was introduced by Parnas et al. [2006].

A PCPP verifier, (or, simply, verifier) for a property P ⊂ {0, 1}n is a
randomized, sublinear-time algorithm that distinguishes with high proba-
bility between inputs that belong to P and inputs that are far in relative
Hamming distance from all members of P. In this respect a verifier is similar
to a property-tester as defined by Goldreich et al. [1998]. However, in contrast
to a tester, the verifier may query an auxiliary proof, called a proof of proximity.
A PCPP system has four basic parameters of interest, described next—length,
query complexity, completeness and a soundness function. The proof length is
the length of the auxiliary proof that is queried by the verifier.1 The query
complexity is the maximal number of bits that can be read from both the input
and the proof. The completeness parameter is the minimal probability with
minimal probability with which inputs that belong to P are accepted when
they are presented along with a “good” proof of proximity. Finally, the sound-
ness function s(δ) is the minimal rejection probability of inputs that are δ-far
(in relative Hamming distance) from (all members of) P, where the minimum

1In PCP literature one often encounters randomness complexity as a means for bounding proof-
length. The two parameters are closely related, that is, proof-length ≈ 2randomness and we stick to
the former parameter.
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is taken over all such δ-far inputs and all possible proofs that may accompany
them.2 (See Section 2 for a formal definition of PCPPs and further discussion
of their parameters).

1.1 Context and Motivation

We are motivated by the attempt to understand the limitations of PCP con-
structions. One interesting open question related to our research is that
of obtaining 3-query PCPs with quasilinear length, completeness 1 − ε and
soundness 1

2 − ε for any language in NP. For the sake of reference, we
informally call such a construction a “super-PCP.” The celebrated result
of Håstad [2001] obtains three out of four of these parameters (the proof
length there is a (very large) polynomial). Numerous other works, such as
Guruswami et al. [1998], Håstad and Khot [2005], Samorodnitsky and
Trevisan [2000], Engebretsen and Holmerin [2008], Khot and Saket [2006],
and Samorodnitsky and Trevisan [2006], to name a few, investigate optimal or
nearly optimal trade-offs between the three parameters of query complexity,
completeness and soundness, while settling for polynomial length proofs. A dif-
ferent line of research focused on optimizing the trade-off between proof length
and query complexity [Polishchuk and Spielman 1994; Harsha and Sudan
2000; Goldreich and Sudan 2006; Ben-Sasson et al. 2003, 2006; Ben-Sasson
and Sudan 2008; Dinur 2007; Moshkovitz and Raz 2008a, 2007] and all of
these constructions obtain perfect completeness. Several of these works, most
notably Harsha and Sudan [2000], Goldreich and Sudan [2006], Moshkovitz
and Raz [2008a], and Moshkovitz and Raz [2007], also strive to simultaneously
optimize the fourth parameter, soundness, but have stopped short of construct-
ing a “super-PCP.”

Our results show why a certain natural class of PCP constructions will not
be suitable for reaching our goal. Most constructions of “short” PCPs (i.e., with
proof length n1+o(1) for NP instances of size n) start by encoding a witness for
an NP-instance by some good linear error correcting code, usually based on
univariate or multivariate polynomials. These codes are inherently hard to
test because they have relatively high degree and are converted into locally
testable codes by appending a PCPP to each individual codeword. Moreover,
all known PCPP constructions are linear, that is, can be obtained by applying
a linear transformation to the codeword (see Section 2.3.2). Our results show,
for instance, that no 3-query linear PCPP appended to such a code can achieve
anything close to the best possible, unless the proof is exponentially long.

This work can also be placed within the larger context of the study of limi-
tations of PCPs and objects related to them. There are preciously few results
that give nontrivial trade-offs between the basic parameters of a PCP system.
One notable example presented by Zwick [1998] shows that the soundness of
a 3-query PCP verifier with perfect-completeness cannot exceed 3/8 unless

2Often, in literature on PCPs, the term “soundness” refers to “soundness-error” which is defined to
be the maximal acceptance probability of a “bad” input. The connection between soundness (used
here) and soundness-error, denoted serror, is given by s = 1− serror.
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NP ⊆ BPP. A larger number of works try to understand the limitations of
PCP systems by either (i) showing limitations of specific techniques used in
PCP constructions, or (ii) proving limitations on computational and combinato-
rial objects that are closely related to PCPs. Along the first line of research one
can mention the work of Feige and Kilian [1995] that shows limitations on de-
randomizing the parallel repetition method of Raz [1998] and that of Bogdanov
[2005] that shows upper bounds on the soundness that can be obtained from
the gap amplification technique of Dinur [2007]. The second line of research
includes the study of the limits of various basic parameters of locally decodable
codes [Katz and Trevisan 2000; Kerenidis and de Wolf 2004; Woodruff 2008],
locally testable codes [Ben-Sasson et al. 2003; Guruswami 2006], unique games
[Khot 2002; Trevisan 2005; Charikar et al. 2006] and a large number of results
regarding the limits of property testing (see the survey [Fischer 2001] for fur-
ther information). Our work resonates with both of these lines of research
because PCPPs are computational objects that are closely related to PCPs and
constitute the method of choice for constructing them. We also hope that the
research initiated here will contribute to a better understanding of the inher-
ent limits of the magical PCP theorem.

Last but not least, the actual soundness parameter one obtains from a small
query PCPP (and the PCPs and LTCs resulting from it) may someday in the
future deem whether such objects can be put to practical use in proof checking
(a la Babai et al. [1991]), communication and cryptography (as in Kilian [1992],
Micali [2000]). Therefore, the study of trade-offs between soundness and proof
length is of inherent importance.

1.2 Informal Description of Main Results

To describe our results, let us discuss the range of parameters we can expect
from a verifier for a linear property over the binary alphabet, that is, a property
that is closed under addition modulo 2. (This amounts to saying P is a linear
subspace of F

n
2 where F2 denotes the two-element field.) We look at nonadaptive

3-query verifiers with perfect completeness, thereby fixing two of the four basic
parameters, and look at the trade-off between proof length and soundness. We
point out that all known constructions of PCPPs naturally yield nonadaptive
3-query verifiers with perfect completeness (see, e.g., Lemma 8.1), so the
results described next apply to all of them.

Suppose we are interested in minimizing proof length. The results of Ben-
Sasson and Sudan [2008] and Dinur [2007] give constructions with proofs of
length at most m · polylog n where m is the minimal size of circuit deciding
P. (Notice the linearity of P implies m = O(n2).) Regarding the soundness
function, consider linear properties P having minimal distance ∼ n/2 and
vanishing rate. In this case, a random word can be shown to have, with
high probability, distance δ ≈ 1

2 from P. The “short PCPP” construction men-
tioned earlier gives s(δ) > ε for some small and unspecified constant ε > 0 that
depends only on δ and neither on P, nor on n.

Next, let us try to increase the soundness. We show in Theorem 2.8 that
soundness can be boosted to s(δ) ≥ δ and this soundness is obtained by a linear
ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 7, Pub. date: September 2009.
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verifier. A verifier is called linear if it checks a linear constraint on the symbols
it queries. (For F2 this amounts to saying the verifier accepts iff the sum
(mod 2) of the queried bits is 0.) For such verifiers, it can be shown that s(δ) is
at most 1

2 and thus the soundness of our construction is optimal. On the down
side, the length of the proof used by this verifier is exponential in n. (We note
in passing that this soundness-optimal construction can be carried out over
any finite field of prime size. See Theorem 2.8 for details.)

To sum up the situation so far, we have constructions that are nearly optimal
in length, but are deficient in soundness and we have constructions that are
optimal in soundness but deficient in length. One could have conjectured (as
we did before embarking on this research project) that a “super-PCPP” with
short proofs and optimal soundness exists. Our first main result, stated in
Theorem 2.9 and Corollary 2.10, rules this out. We show a trade-off between
proof length and soundness that essentially matches our soundness-optimal
construction. In plain words, for some properties (discussed later) any PCPP
verifier that queries a short proof of length � must incur a soundness deficiency,
and this deficiency increases as � decreases (informally, soundness deficiency
measures how much the rejection probability of wrong inputs is reduced when
moving from long proofs to short ones; see Definition 2.5 for a formal definition
of soundness deficiency).

Our next main result, stated in Theorem 2.11 and Corollary 2.12, proves a
tighter trade-off similar to the one mentioned for the case of Fp-linear verifiers
for Fp-linear properties over a finite field of (prime) size p. Our results in this
case are stronger even though the query complexity, when measured in bits, is
greater than 3 (however, the bits are read from three “blocks”, where each block
encodes a field element). Finally, our third main result, stated in Theorem 2.13
and Corollary 2.14, presents essentially the same kind of exponential trade-
off between soundness and proof length for a natural generalization of linear
verifiers, called unique verifiers (see Definition 2.2).

So far we have not specified which properties cause this kind of trade-off to
arise, that is, which properties are hard to verify. The culprits are properties
that are “hard to test.” Informally, we say that P ⊂ {0, 1}n is hard to test if any
property-tester for P (as defined in Goldreich et al. [1998]) that rejects (say) 1

3 -
far inputs with probability greater than (say) 1/100 requires query complexity
q� 3. Our main theorems (Theorems 2.9, 2.11, and 2.13) show an exponential
trade-off between the property-testing query complexity q and the minimal
length of a 3-query verifier with large soundness (say, achieving soundness
function s(δ) ≥ δ−1/100). In a certain sense we show that any property that is
hard to test is also hard to verify. Next, we briefly explain why we believe our
results are interesting.

Later Results. We would like to add that, after the publication of this work,
Moshkovitz and Raz [2008b] constructed 2-query projection PCPs of almost
linear size with perfect completeness and soundness o(1) over a nonbinary al-
phabet. An immediate consequence of this result is the construction of 3-query
PCP with almost-linear size, completeness 1 − o(1) and soundness 1/2 − o(1)
for binary alphabet. Their construction, however, does not imply existence of
PCPPs of similar parameters.
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1.3 Proof Techniques

Inspective PCPPs. Consider a 3-query verifier that rejects inputs that are δ-far
from P with probability ≈ δ. At first sight it may seem that reaching sound-
ness s(δ) ≥ δ is impossible because such high soundness forces the verifier to
make at least one out of three queries to the input, leaving only two queries for
checking the proof. Indeed, a verifier that seldom queries the input can easily
be fooled to accept with high probability a legitimate proof accompanying an
input that is δ-far from P. The need to look at the input naturally leads us to
define an inspective verifier as one that inspects the input on every invocation.
Formally, an inspective verifier is one that makes at most two queries to the
proof; all other queries are to the input.3 Our main positive result, Theorem
2.8, says that every Fp-linear property over a prime field of size p has a 3-
query Fp-linear inspective verifier with soundness function s(δ) ≥ δ and proof
length at most pdim(P). “Good” proofs for inputs w ∈ P turn out to be certain
“folded” Hadamard codewords and we analyze soundness using the Fourier an-
alytic approach to linearity testing that was introduced by Bellare et al. [1996].
(See Section 3 for more details.) The soundness obtained by the verifier of
Theorem 2.8 is the benchmark against which we measure all other 3-query
verifiers, and next we describe how we prove that short proofs lead to
soundness-deficiency with respect to this benchmark.

Exponential Trade-offs between Soundness and Proof Length for Inspective
PCPPs. All our results about the soundness deficiency of short PCPPs are
based on exponential trade-offs between soundness and proof length for
inspective PCPPs. Since these results are similar in spirit, let us describe how
we obtain them in the simplest setting—that of F2-linear verifiers. The actual
proofs have a few additional subtle details that we brush aside in the following
informal description.

Roughly speaking, we show that if the linear property P ⊂ F
n
2 has a linear

inspective verifier that makes q queries4 to a proof of length � and achieves
soundness function s(δ), then for every ε > 0 the property P has a tester,
i.e., a proofless verifier that queries only input bits, with query complexity
O((q log �)/ε) and soundness function s(δ) − ε. The contrapositive formulation
for δ ≈ 1/2 and ε = 0.01 gives the following statement. Suppose P is hard to
test, that is, any tester for P with large soundness requires large query com-
plexity. Then any inspective linear verifier for P with small query complexity
must use proofs of exponential length. Examples of hard to test properties
include most random Low Density Parity Check (LDPC) codes as defined by
Gallager [1963] and linear spaces P for which the dual space, denoted P⊥,
has no elements of small support (in coding terminology, P is a linear code

3Alternatively, an inspective verifier could be defined as one that makes at least one query to the
input. For query complexity 3 the two definitions coincide, but for larger query complexity there
is a big difference. In particular, our main technical lower bound can be extended to any q-query
inspective PCPP, as long as we limit the number of proof-queries to be at most two.
4Our trade-offs for inspective PCPPs hold for query complexity larger than 3, even though for the
proof of our three main theorems query complexity 3 suffices.
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with large dual distance). As mentioned earlier, most error correcting codes
actually used as the starting point for constructing PCPs, PCPPs, and LTCs
(including Reed-Solomon/Reed-Muller codes) fall within this latter class.

From Inspective to General PCPP Trade-offs. Given the exponential trade-
off between soundness and proof length for inspective verifiers, the proof of our
main results (stated in Section 2) goes along the following lines. A verifier is
forced to choose between two bad options. Either the probability that it reads
only proof-bits is large. In this case we fool it by presenting a legitimate proof
for some word and capitalize on the fact that the verifier seldom looks at the
input (that is δ-far from P). Otherwise, the probability that the verifier makes
an inspective query is large. In this case we use the trade-off for the inspective
case to fool verifiers that use short proofs. In either of these two cases we
manage to fool the verifier into accepting words that are δ-far from P with
probability ≈ 1− δ/2, that is, the soundness-deficiency of short-proof verifiers
when compared to the exponential length verifier of Theorem 2.8 is ≈ δ/2. To
complete the overview of our proof techniques we describe next how we obtain
exponential length-soundness trade-offs for inspective verifiers.

Proving Trade-off Theorems for Inspective Verifiers. Informally, we convert
a q-query inspective verifier for P that uses a proof of length � and obtains
soundness function s into a proofless tester with query complexity O(q log �)/ε
and soundness s − ε. We start by noticing that an inspective verifier gives
rise to a natural induced labeled multigraph. The vertices of this graph are
indices of proof bits, so the number of vertices equals the length of the proof.
For simplicity assume each query-tuple reads exactly two bits of the proof.
Thus, each query-tuple defines an edge whose endpoints are the proof bits
read, and we label this edge by the set of indices of input bits read when mak-
ing the query. (The resulting graph may have multiple edges between two
vertices, and these edges may have different labels.). Notice the induced graph
is actually a representation of the verifier in the sense that a single invoca-
tion of the verifier corresponds to picking a random edge in the graph and
making the set of queries given by the names of the end-vertices and the edge-
label. More to the point, the labeled graph also constitutes a partially defined
constraint graph, meaning that if all input bits are read then the resulting
set of constraints (over proof bits) forms a constraint satisfaction problem with
two-variables per constraint.

We apply a decomposition lemma (Lemma 4.5) due to Leighton and Rao
[1999] to the constraint graph and remove some of its edges. The decomposi-
tion lemma guarantees that if the graph was small to start with (i.e., the proof
was short), then after removing a tiny fraction of edges we are left with discon-
nected components of small radius.5 The “decomposed” graph corresponds to a
new linear inspective verifier whose soundness has not decreased significantly
because it makes pretty much the same queries as the original verifier. Our

5The radius of a connected graph is the minimum maximal distance between any vertex and
any other vertex (i.e., rad(G) = minv maxu d(u, v), where d(u, v) denotes the distance between the
vertices u and v.
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analysis is completed (in Lemma 6.3) by showing that inspective PCPPs whose
induced graph has radius R can be converted with no loss in soundness into
(proofless) testers with query complexity O(R). Summing up, if the proof is
short to start with, then its decomposed graph has small radius, hence P has
a (proofless) tester with small query complexity and good soundness.

The decomposition lemma mentioned above was previously used in a closely
related context by Trevisan [2005] to provide algorithms for approximating
unique games. We use it for similar purposes, namely, for analyzing constraint
graphs, but our setting differs from that of Trevisan [2005] in three important
aspects. First, in our setting the constraints that label edges of the constraint
graph are not given to the verifier. Only the structure of the graph itself is
known in advance. This difference also explains why the techniques relying on
linear and semidefinite programming that were used in Khot [2002], Trevisan
[2005], Charikar et al. [2006], and Gupta and Talwar [2006] do not seem appro-
priate for our setting. The second difference is that for our constraint graphs
that are induced by 3-query verifiers, perfect completeness can be assumed.
In the context of the unique games conjecture, assuming perfect completeness
makes the problem trivial to solve. Finally, we use the decomposition lemma
to construct a tester for the constraint graph rather than just decide if the
constraint graph is close to be satisfiable.

We end our discussion of the proof techniques by pointing out Lemma 5.2, a
generalization of the decomposition lemma to the case of nonunique constraint
graphs. This lemma, which is required for obtaining our main result for gen-
eral verifiers (Theorem 2.9), may be of independent interest. It says that any
2-CSP with � constraints over the binary alphabet that is ε-far from being sat-
isfiable, must contain a contradiction with O(log �/ε) constraints.

Organization. In Section 2, we give formal definitions and statements of our
main results. We then in Section 3 construct (exponentially long) PCPPs with
optimal soundness. We then prove the deficiency in soundness when one re-
stricts to polynomially long PCPPs in Sections 4–7. Section 4 serves as warmup
to latter sections for the purpose of illustrating the main idea of the proofs. As
such, we prove only a weaker version of one of the main theorems in Section 4
and then prove the full theorems in the latter sections. In Section 8, we sketch
how the nearly linear PCPs to [Ben-Sasson and Sudan 2008; Dinur 2007] can
be adapted to yield nonadaptive 3-query linear verifiers with perfect complete-
ness for linear properties.

2. DEFINITIONS AND MAIN RESULTS

We start by recalling the basic definitions and parameters of a PCPP system.
Then, in Section 2.2 we introduce and define the best soundness and the
soundness deficiency which are the quantities we use to measure the trade-
off between proof length and soundness. In Section 2.3 we summarize our
main results for the three cases of (i) general PCPPs over the binary alphabet,
(ii) linear PCPPs over finite fields, and (iii) unique PCPPs.

Finally, in Section 2.4 we formally define inspective PCPPs and state the
trade-offs for these PCPPs.
ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 7, Pub. date: September 2009.
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2.1 Probabilistically Checkable Proofs of Proximity (PCPPs)

Recall the basic task of property testing. Let � be a finite alphabet. A set
P ⊆ �n is called a property of length n over �. We are interested in decid-
ing the promise problem whose set of YES instances is P and whose set of
NO instances is NOδ0 =

{
w ∈ �n | δ(w, P) > δ0

}
, where δ(·) denotes fractional

Hamming distance and δ0 is called the proximity parameter. The decision
should be made after making a small number of queries into the input word
w ∈ �n and the decision should be correct with high probability. (More infor-
mation on property testing can be found in Goldreich et al. [1998] and in the
survey Fischer [2001].)

In the context of proximity testing we try to decide the very same promise
problem but the difference is that we allow oracle access to an additional proof
of proximity π ∈ �� of length �, and restrict the total number of queries that
can be made to both w and π . A randomized query-restricted algorithm decid-
ing the property testing problem is called a tester and when we allow oracle
access to a proof we call it a verifier. The formal definition follows. (See Ben-
Sasson et al. [2006] for more information on PCPPs.)

To simplify exposition we view w,π as functions from [n] = {1, . . . , n} and
from [n+ 1, n+ �] = {n+ 1, . . . , n+ �} respectively to � and define the word-proof
pair as the function (w ◦ π) : [n + �] → � that is the concatenation of w and
π . We call (w ◦ π)[i] a word-symbol whenever i ≤ n and a proof symbol when
i ∈ {n + 1, . . . , n + �}. For a set of indices I ⊆ [n + �] let (w ◦ π)|I : I → � denote
the restriction of w ◦ π to I.

Definition 2.1 (Verifier, Tester). A query of size q into a word of length n and
proof of length � is a pair Q = (I, C) where I ⊆ [n + �], 0 < |I| ≤ q denotes the
query’s index-set and C : � I → {accept, reject} is the query’s constraint. Given
word w and proof π let Q(w ◦ π) = C((w ◦ π)|I). A (q, n, �)-verifier for a property
of length n is a pair V = 〈Q, D〉 where

—Q is a finite set of queries of size at most q into a word of length n and proof
of length �.

—D is a distribution over Q. We use Q ∼D Q to denote that Q is sampled from
Q according to distribution D.

A q-tester is a (q, n, 0)-verifier, that is, a verifier that queries only the input.

Often we will restrict our attention to a subclass of verifiers that use special
kinds of constraints. In particular, we will be interested in unique and linear
verifiers, defined next.

Definition 2.2 (Linear and Unique verifiers). A query Q = (I, C) is called
unique if for every set of |I| − 1 answers to |I| − 1 queries, there exists a
unique answer to the missing query that satisfies the constraint. Formally,
for all i0 ∈ I and aij ∈ �, ij ∈ I \ {i0} there exists a unique b ∈ � such that
C(ai1, . . . , ai0−1, b , ai0+1, . . . , ai|I|) = accept. A verifier is called unique if all its
queries are unique. Let uniqV denote the set of unique verifiers.

A query is called F-linear if � = F is a finite field and the set of assignments
accepted by the query-constraint C are solutions to a linear constraint of the

ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 7, Pub. date: September 2009.



7: 10 · E. Ben-Sasson et al.

form
∑

aixi = 0 where ai ∈ F . A verifier is called F-linear if all its queries are
F-linear. Let F-linV denote the set of F-linear verifiers.

Notice that without loss of generality, F-linear verifiers are unique (this
assumption is justified by removing from each query’s index-set the set of
indices upon which the query-constraint does not depend). The use of the
term unique is justified by noticing that if we assign all but two indices of a
unique constraint, the restricted binary constraint is “unique” according to the
definition of this term by Khot [2002].

Informally, if a (q, n, �)-verifier solves the promise problem associated with
P “with high probability” then we say P “has a PCPP” (with query complexity
q and length �). The completeness and soundness parameters quantify the
success probability of the verifier. The formal definition follows.

Definition 2.3 (PCPP, Testability). A property P ⊂ �n is said to have a
PCPP of length �, query complexity q, completeness parameter c and sound-
ness function s : (0, 1]→ [0, 1] if there exists a (q, n, �)-verifier for the property
satisfying the following pair of requirements.

—Completeness. For all w ∈ P,

max
π∈��

Pr
Q∼DQ

[Q(w ◦ π) = accept] ≥ c.

If c = 1, we say the verifier has perfect completeness.
—Soundness. For all w ∈ �n \ P,

min
π∈��

Pr
Q∼DQ

[Q(w ◦ π) = reject] ≥ s(δ(w, P)),

where δ(w, P) denotes the minimal fractional Hamming distance between w
and an element of P.

If P has a PCPP of length 0, query complexity q, completeness parameter c
and soundness function s, we say that P is q-testable with completeness c and
soundness s.

A verifier is said to be adaptive if its query indices depend on answers given
to previous queries. The verifier defined above is nonadaptive. All results in
this paper refer to nonadaptive verifiers with perfect completeness. We point
out that all known PCPP constructions use nonadaptive verifiers and achieve
perfect completeness so our deficiency bounds, stated next, apply to all of them
(see Section 8 for further discussion).

2.2 Soundness Deficiency

We study the trade-off between proof length and soundness. Our aim is to show
that short PCPPs cannot attain the same soundness as long ones. To quantify
this trade-off we start by defining the best soundness that can be obtained by
a class of verifiers with restricted proof length.

Definition 2.4 (Best Soundness). Let P ⊆ �n be a property. For integers q, �
and δ ∈ [0, 1], define the best soundness SP (q, �, δ) to be the maximum—taken
ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 7, Pub. date: September 2009.
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over all (q, n, �)-verifiers V—of the soundness of V with respect to inputs that
are δ-far from P. Formally,

SP (q, �, δ) = max
(q, n, �)-verifiers

min
w◦π∈�n+�, δ(w,P)=δ

Pr
Q∼DQ

[Q(w ◦ π) = reject].

The best tester soundness is SP (q, 0, δ).
The best soundness with respect to a class of verifiers V, denoted SP

V (q, �, δ),
is defined by taking the maximum above over all (q, n, �)-verifiers in V. Notice
that SP

V (q, �, δ) ≤ SP (q, �, δ).

The soundness-deficiency, defined next, is the reduction in best soundness
incurred by 3-query verifiers limited to using short proofs.6 As customary in
computational complexity, we measure the asymptotic deficiency over a family
of properties of increasing length. In the remark following the definition, we
further explain the need for complexity assumptions.

Definition 2.5 (Soundness deficiency). For P = {P ⊆ �n | n ∈ Z+} a family of
properties, V a class of verifiers and � : Z+ → Z+ a function measuring proof
length, let the soundness-deficiency be the function measuring the decrease in
soundness due to limited proof length. Formally, it is a function from (0, 1] to
[0, 1] defined by

s-Def.V[P, �](δ) = lim inf
n→∞ SPn

V (3,∞, δ)− SPn
V

(
3, �(n), δ

)
.

For C a complexity class and L a family of complexity functions, we denote by
s-Def.V[C,L] the set of soundness deficiency functions, containing one function
for each P ∈ C and � ∈ L and by s-Def.V[C,L](δ) the set of evaluations of these
functions at the point δ. Let in addition

max-s-Def.V[C,L] = sup
δ∈(0,1]

s-Def.V[C,L](δ)

be the supremum value that these functions obtain over all δ ∈ (0, 1]. As before,
whenever there is no restriction to a specific class of verifiers, the subscript V
is omitted.

Remark 2.6 (Complexity restrictions). If no restriction is placed on the com-
plexity of P , then one may end up with trivial and uninteresting results.
For instance, if Pn ⊂ {0, 1}n is random, then with high probability any
nondeterministic circuit deciding the promise problem associated with Pn re-
quires size 2�(n/ log n). This implies that there are no constant query PCPPs with
positive soundness and proof length 2o(n/ log n). Thus, to get meaningful results,

6The definition could be naturally generalized to query complexity greater than 3. However, since
all our results are limited to q = 3 we omit the query complexity parameter to simplify notation.
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we focus on properties P ∈ P/poly for which the existence of polynomial-length
PCPPs is guaranteed.

2.3 Summary of Results

In this section, we summarize our main results bounding the maximum sound-
ness deficiency for three different classes of 3-query verifiers

—general (binary) verifiers. verifiers with general constraints over {0, 1};
—linear verifiers. verifiers with linear constraints over any field F;
—unique verifiers. verifiers with unique constraints over any �.

We will refer to linear properties and their duals in all our results.

Definition 2.7. Let F be a finite field and n ∈ Z+. A property P ⊆ Fn is said
to be F-linear if P is a linear space with respect to the field F. We will usually
refer to an F-linear property as an F-linear code and its elements as codewords.

For an F-linear property P ⊆ Fn, the dual property to P, denoted by P⊥ ⊆ Fn

is defined as follows: P⊥ = {w ∈ Fn|〈u, w〉 = 0,∀u ∈ P}. We will usually refer to
P⊥ as the dual code and its elements as dual codewords.

We will frequently refer to the following testing question (parametrized by
δ): distinguishing codewords from words that are δ-far from the code. This
question is not interesting when there are no words which are δ-far from the
code. In this case, we will say that the code is trivially δ-testable. Thus, the
testing question is interesting only for codes that are not trivially δ-testable.
We say that a family P = {Pn|n ∈ Z+} is not trivially δ-testable if there exists n0
such that for all n > n0, Pn is not trivially δ-testable.

Deficiency bounds are obtained by bounding from below the soundness of
inspective verifiers that have access to long proofs and then bounding from
above the soundness obtained by verifiers limited to short proofs. The next
theorem shows the first bound, namely, that large soundness is obtainable if no
restriction is placed on proof length. Its proof is based on the Fourier analytic
approach introduced by Bellare et al. [1996] and appears in Section 3.

THEOREM 2.8 (BEST SOUNDNESS WITH UNBOUNDED PROOF LENGTH). Let
Fp be a prime field. Every Fp-linear property P ⊆ Fn

p has a 3-query Fp-linear
verifier using a proof of length ≤ |F|dim(P) ≤ |F|n that achieves soundness
function s(δ) ≥ δ. Formally,

SP
linV

(
3, |Fp|dim(P), δ

)
≥ δ.

2.3.1 Deficiency of Short PCPPs. Our first main theorem says that for
some properties, proofs of subexponential length incur constant soundness-
deficiency. This deficiency can be reduced, but only at the expense of using
exponentially long proofs.

THEOREM 2.9 (MAIN). Let α ∈ (0, 1) be a positive constant and let P �
{Pn ⊆ F

n
2 : n ∈ Z+} be a family of binary linear properties (codes) with dual
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distance7 at least αn and such that for some δ0 ∈ (0, 1) they are not trivially δ0-
testable. The properties in P have no subexponential 3-query PCPP’s achieving
soundness larger than 1/3. Namely, for every ε > 0 there are β > 0 and n0 ∈ N

such that for any property Pn ∈ P , n > n0 the following is satisfied for all
δ ∈ [0, δ0]:

SPn
(
3, 2βn, δ

) ≤ 1
3

+ ε.

As a special case of Theorem 2.8, we show that every binary linear property
P ⊆ F

n
2 of dimension k ≤ n has a (3, n, 2k)-verifier with soundness function

s(δ) ≥ δ. This implies constant deficiency for short PCPPs over the binary
alphabet as formalized in the following corollary. To obtain it take P to be any
family of linear properties P = {Pn ⊂ F

n
2} satisfying |Pn| ≤ 2εn for ε > 0 and

having dual distance �(n).

COROLLARY 2.10 (SOUNDNESS DEFICIENCY). Let SUBEXP denote the set
of subexponential functions, that is, functions satisfying f (n) = 2o(n). There
exists a family P of linear properties over F2 such that

s-Def.[P, SUBEXP](δ) ≥ δ − 1
3

.

Consequently, since there are words that are roughly 1
2 -far from the property

P , the maximal deficiency with sub-exponential proof length is at least 1
6 ,

that is,

max-s-Def.[P/poly, SUBEXP] ≥ 1
6

.

2.3.2 Deficiency of Short Linear PCPPs. Our next main theorem presents
stronger deficiency bounds for linear PCPPs and states the following intu-
itively appealing implication: Every F-linear property that is untestable—in
the sense that testers with small query complexity for it have low soundness—
is also unverifiable, that is, 3-query F-linear verifiers with short proofs must
incur a large loss in soundness. Limiting our attention to linear verifiers seems
natural in light of the fact that all current PCPP constructions produce linear
verifiers for linear properties, as argued in Section 8.

THEOREM 2.11 (MAIN, LINEAR CASE). Let P ⊆ Fn be a F-linear property.
Let s[�](δ) denote the best soundness of a (3, n, �)-linear verifier for P, that is,
s[�](δ) = SP

linV (3, �, δ). Let t[q](δ) denote the best soundness of a q-tester for P,
that is, t[q](δ) = SP (q, 0, δ). Then

s[�](δ) ≤ inf
ε>0

{
t
[

36 log �

ε

]
(δ) +

1
2
·
(

1− 1
|F| + ε

)}
.

7The dual distance of a linear property P is the distance of the dual code P⊥ which is equivalently
the minimal support-size of a nonzero vector in the space dual to P. The dual distance of P is a
lower bound for the query complexity of one-sided error local testing, since it is also equal to the
lightest parity check vector for P.
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Using Theorem 2.8 again for arbitrary prime p we get the following bound
on the deficiency of linear verifiers.

COROLLARY 2.12 (SOUNDNESS DEFICIENCY, LINEAR CASE). Let SUBEXP
denote the set of subexponential functions, that is, functions satisfying f (n) =
2o(n). For every prime field Fp there exists a family of Fp-linear properties P
such that

s-Def.Fp−linV[P, SUBEXP](δ) ≥ δ − 1
2
·
(

1− 1
p

)
.

Consequently, the maximal deficiency of linear verifiers with subexponential
proofs is at least 1

2 · (1− 1/p). In other words,

max-s-Def.Fp−linV[Fp − linear, SUBEXP] ≥ 1
2
·
(

1− 1
p

)
.

We point out that even if we restrict our attention to families of linear prop-
erties with constant dual distance and not trivially testable, the soundness
deficiency can be very large. This last point is explained in detail in the proof
of Corollary 2.12.

2.3.3 Deficiency of Short Unique PCPPs. Our last main theorem bounds
the soundness of arbitrary unique verifiers (of which linear verifiers are a spe-
cial case).

THEOREM 2.13 (MAIN—UNIQUE CASE). Let α ∈ (0, 1) be a positive con-
stant and let P � {Pn ⊆ Fn : n ∈ N} be a family of F-linear properties (codes)
with dual distance at least αn and such that for some δ0 ∈ (0, 1) they are not
trivially δ0-testable. For every ε > 0, there exists a β > 0 and n0 ∈ N such that
for any property Pn ∈ P , n > n0 the following is satisfied for all δ ∈ (0, δ0]:

SPn
uniqV

(
3, 2βn, δ

) ≤ 2(1 + ε)
3

·
(

1− 1
|F|
)

.

As before, we use the fact that for prime p, every Fp-linear property has a
high-soundness linear (hence unique) verifier, as long as proof length is unlim-
ited. This implies the following bound on deficiency of unique verifiers.

COROLLARY 2.14 (SOUNDNESS DEFICIENCY, UNIQUE CASE).Let SUBEXP
denote the set of sub-exponential functions, that is, functions satisfying f (n) =
2o(n). For every prime field Fp there exists a family of Fp-linear properties P such
that

s-Def.Fp−uniqV[P, SUBEXP](δ) ≥ δ − 2
3
·
(

1− 1
p

)
.

Consequently, the maximal deficiency of unique verifiers with subexponential
proofs is at least 1

3 · (1− 1/p), or formally,

max-s-Def.Fp−uniqV[Fp − linear, SUBEXP] ≥ 1
3
·
(

1− 1
p

)
.
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2.4 Inspective PCPPs

The deficiency bounds stated above follow from much stronger bounds on the
soundness achieved by a special family of inspective verifiers, defined next.
Informally, inspective verifiers are called so because every 3-query they make
inspects the word w in at least one location.

Definition 2.15 (Inspective PCPP). A query Q = (I, C) is called inspec-
tive if its index-set involves at most two symbols of the proof, that is,∣∣I ∩ [n + 1, n + �]

∣∣ ≤ 2. We refer to the above quantity as the inspective size
(i-size) of the query Q.

A verifier V = 〈Q, D〉 is said to be inspective if all its queries are inspective.
We denote by Vi the set of inspective verifiers, by linVi the set of inspective
linear verifiers and by uniqVi the set of inspective unique verifiers.

A property P ⊂ �n is said to have an inspective PCPP of length �, query
complexity q, and soundness function s : (0, 1]→ [0, 1] if there exists a (q, n, �)-
inspective verifier with soundness function s. Inspective linear PCPPs and
inspective unique PCPPs are similarly defined.

Remark 2.16. We note that the linear verifier mentioned in Theorem 2.8 is
in fact an inspective verifier that makes inspective queries of size exactly two.
Thus, SP

linVi

(
3, |Fp|dim(P), δ

) ≥ δ.

The main technical components in the proofs of Theorems 2.9, 2.11, and
2.13 are the following respective upper bounds on the soundness of inspective
verifiers limited to querying only short proofs. The proof of these theorems,
which are deferred to the appendix, rely on defining a natural inspective graph
(Definition 5.5) and applying a decomposition lemma to it. In the case of
general PCPPs over the binary alphabet we use Lemma 5.2 and in the re-
maining two cases we apply Lemma 4.5 which is very similar to the original
decomposition lemma of Leighton and Rao [1999].

Definition 2.17 (d-Universal Properties). A property P ⊆ �n is d-universal
if for all subsets I ⊂ [n], |I| ≤ d, the restriction of P to I equals � I, that is,
{w|I | w ∈ P} = � I . Observe that any linear property P with dual distance d is
(d− 1)-universal.8

THEOREM 2.18 (BEST SOUNDNESS WITH INSPECTIVE VERIFIERS). Let P ⊆
{0, 1}n be a d-universal property, and let q ∈ Z+. Let si denote the best soundness
of a (q, n, �)-inspective verifier for P, that is, si(δ) = SP

Vi
(q, �, δ). Then for every

δ ∈ [0, 1],

si(δ) ≤ inf
ε>0

{
4 log(ε−2(n + �))

d
q−1 − 2

+ ε

}
.

8Recall (from Footnote 7) that the dual distance of a linear property P is d if the minimal support-
size of a nonzero vector in the space dual to P is exactly d. This, in turn, implies that the restriction
of the property to any d− 1 coordinates is �d−1.
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THEOREM 2.19 (BEST SOUNDNESS WITH INSPECTIVE LINEAR VERIFIERS).
Let P ⊆ Fn be a F-linear property. Let si(δ) denote the best soundness of a
(3, n, �)-linear inspective verifier for P, that is, si(δ) = SP

linVi
(3, �, δ). Let t[q](δ)

denote the best soundness of a q-tester for P, that is, t[q](δ) = SP (q, 0, δ). Then

si(δ) ≤ inf
ε>0

{
t
[

36 log �

ε

]
(δ) + ε

}
.

THEOREM 2.20 (BEST SOUNDNESS WITH INSPECTIVE UNIQUE VERIFIERS).
Let P ⊆ �n be a property. Let si denote the best soundness of a (3, n, �)-unique
inspective verifier for P, that is, si(δ) = SP

uniqVi
(3, �, δ). Let t[q](δ) denote the best

soundness of a q-tester for P, that is, t[q](δ) = SP (q, 0, δ). Then for any si(δ) > ε

si(δ) ≤ inf
ε>0

{
4t

[
10 log �(

si(δ)− ε
)
ε
· ln (2|�|)

]
(δ) + ε

}
.

3. LONG PCPPS WITH BEST POSSIBLE SOUNDNESS

In this section, we will prove that any Fp-linear property P ⊆ Fn
p over a

prime field Fp has a 3-query linear inspective PCPP of length at most pdim(P).
Furthermore, the soundness of this verifier on words that are δ-far from P
satisfies s(δ) ≥ δ, thereby proving Theorem 2.8. We point out that if P is
“nontrivial”, meaning there is no i ∈ [n] such that wi = 0 for all w ∈ P, then
the soundness of linear verifiers can be shown to be bounded from above by
1−1/p. This shows that for δ approaching 1−1/p the term “best possible” aptly
describes the soundness function of our verifier.

3.1 Fourier Transform—Preliminaries

We interpret Zp as the multiplicative group of pth complex roots of unity. Let
ω � e

2πi
p , and let μp = {ω0, ω1, . . . , ωp−1} be the pth complex roots of unity. For

every α = (α1, . . . , αn) ∈ Zn
p we define the function χα : Zn

p→ C as

χα(x1, . . . , xn) = ω(x·α) = ω
∑

i xiαi.

For two functions f : Z
n
2 → C and g : Zn

p → C, we define their inner
product as

〈 f, g〉 � 1
pn

∑
x∈Zn

p

f (x)g(x) = Ex∈Zn
p

[
f (x)g(x)

]
.

It is easy to verify that the functions χα : Zn
p→ C are orthonormal with respect

to this inner product. Namely, that for every α ∈ Zn
p,

〈χα, χα〉 = 1
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and for every α, β ∈ Zn
p, α �= β,

〈χα, χβ〉 = 0.

Therefore, the functions {χα}α∈Zn
p

form a basis for the space of functions f :
Zn

p→ C (the dimension of which is exactly pn). Hence, every function f : Zn
p→

C can be written as a linear combination of the elements of this basis

f (x) =
∑

α

f̂ αχα(x),

where the coefficients f̂ α (called the Fourier coefficients of f ) are defined as
follows:

f̂ α = 〈 f, χα〉.
We have the following equality (Parseval’s identity)∑

α∈Zn
p

| f̂ α|2 = 〈 f, f 〉 = Ex∈Zn
p

[| f (x)|2]

and in particular, if f : Z
n
p→ μp, then

∑
α∈Zn

p
| f̂ α|2 = 1 and for all α, | f̂ α| ≤ 1.

We also have the following useful lemma.

LEMMA 3.1. Let η ∈ μp be a pth root of unity. Then the sum
∑

i∈[p]\{0} ηi

equals p− 1 if η = 1, and it equals −1 for any η �= 1.

3.2 Proof of Theorem 2.8

Let P ⊆ Zn
p be a Zp-linear space of dimension k. Fix G ∈ Zn×k

p to be a matrix
such that P equals the span of columns of G so that

P = {w : ∃x ∈ Z
k
p such that w = Gx}.

Let gi ∈ Zk
p denote the ith row of G. Thus, if w = Gx, we have that wi = (gi · x)

for all i. In the terminology of error correcting codes G is a generating matrix
for the [n, k]p-code P and so we refer to elements w ∈ P as “codewords.”

For every x ∈ Zk
p we denote by Hx : Zk

p → C the Hadamard encoding of x,
which is defined as Hx(y) = ω(x·y) = ω

∑
i xiyi. The function Hx can be explicitly

written as a vector of values (of the exponents) in Z
pk

p . However, the following
folded representation of Hx will be simpler to analyze. We partition the set
Zk

p \ {0} into disjoint classes of the form
{

jy : j ∈ {1, . . . , p − 1}
}
, each of size

p− 1 (each class corresponds to some element y ∈ Zk
p \ {0}). Then for each of

these classes we choose one of its elements as a representative, and eventually
we keep the values of Hx only for these representative elements. Now we can
extract the value of Hx(y) for every y ∈ Zk

p as follows.

—If y = 0 then Hx(y) = ω0 = 1.
—If y is one of the representatives, then we read the appropriate value accord-

ing to the folded encoding.
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—Otherwise, we find a representative u and j such that y = ju, we read Hx(u)

by the previous rule, and set Hx(y) =
(

Hx(u)
) j

.

Since Hx is a linear function, these extraction rules are consistent with the
original function.

For every codeword w ∈ P, we denote by xw ∈ Zk
p the vector that satisfies

w = Gxw, and we denote by πw : Zk
p→ C the Hadamard encoding of xw, that is,

πw = Hxw
. We assume that πw is represented in its folded form, so the actual

representation of πw takes pk−1
p−1 values in Zp. Note that the value of πw on 0 is

not kept in the folded representation.
Consider the following 3-query linear inspective verifier V for P

INSPECTIVE VERIFIER V
INPUT (AS ORACLES): w ∈ Z

n
p, π : Z

k
p→ C

(1) Choose y ∈ Zk
p and i ∈ [n] uniformly at random

(2) Output accept if and only if π(y)ωwi = π(y + gi).

CLAIM 3.2. The inspective verifier V satisfies the following properties:

—Completeness: If w ∈ P and π = πw then Pr
[
V (w,πw) = accept

]
= 1

—Soundness: For any w ∈ Zn
p and any (folded) π ∈ Z

pk−1
p−1

p , Pr
[
V (w,π ) = reject

] ≥
δ(w, P)

Before proceeding to the proof of Claim 3.2, we first observe that Theorem
2.8 follows immediately from the above claim.

PROOF. For a codeword w = G · xw ∈ P and a legal proof πw = Hxw
we have

wi = (gi · xw), and together with the fact that Hxw
is linear we have

πw(y + gi) = πw(y) · πw(gi) = πw(y) · ω(gi·xw) = π(y) · ωwi

thus, the completeness condition is satisfied. Now we have to prove that the
soundness of V is as required.

In the following, we use the fact that the function π is represented in folded

form, and hence for every y ∈ Zk
p and j ∈ [p] we have π( jy) =

(
π(y)

) j
. Denote

by s the soundness of V, i.e., the probability it rejects a word-proof pair. We are
going to express s in terms of δ(w, P) by making some manipulations on the
Fourier expansion of π . According to the description of algorithm V,

1− s = Pry,i[π(y)ωwiπ(y + gi) = 1]
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and according to Lemma 3.1, if η is a pth root of unity, then the sum
∑

j∈[p]\{0} η
j

equals p− 1 when η = 1, and it equals −1 otherwise. Thus for all pairs (w,π)
we have

(p− 1)(1− s)− s = Ey,i

[ ∑
j∈[p]\{0}

(
π(y)ωwiπ(y + gi)

) j]
=

Ey,i

[ ∑
j∈[p]\{0}

π( jy)ω jwiπ( jy + jgi)
]

=

Ey,i

[ ∑
j∈[p]\{0}

ω jwi(
∑

α

π̂αχα( jy))
(∑

β

π̂βχβ( jy)χβ( jgi)
)]

=

∑
α,β

π̂απ̂β

∑
j∈[p]\{0}

Ei

[
ω jwiχβ( jgi)

]
Ey

[
χα( jy)χβ( jy)

]
=

by the orthonormality of the character functions∑
α

|π̂α|2
∑

j∈[p]\{0}
Ei

[
ω jwiχα( jgi)

]
=

∑
α

|π̂α|2Ei

[ ∑
j∈[p]\{0}

ω jwiχα( jgi)
]

=

∑
α

|π̂α|2Ei

[ ∑
j∈[p]\{0}

(
ωwiχα(gi)

) j]
=

∑
α

|π̂α|2Ei

[ ∑
j∈[p]\{0}

(
ωwi−α·gi

) j]
=

by Lemma 3.1, for every i such that wi = αgi (the agreeing indices) the sum∑
j∈[p]\{0}

(
ωwi−α·gi

) j
evaluates to p − 1, and for all other indices i, this sum

evaluates to −1; therefore, the expression equals∑
α

|π̂α|2
((

1− δ(w, Gα)
)
(p− 1)− δ(w, Gα)

)
≤

((
1− δ(w, P)

)
(p− 1)− δ(w, P)

)∑
α

|π̂α|2 ≤

p− 1− pδ(w, P).

The last inequality is due to Parseval’s identity. To conclude, we have
(p− 1)− ps≤ (p− 1)− pδ(w, P), or simply s≥ δ(w, P) as required.

4. PROOF OF LENGTH-SOUNDNESS TRADE-OFF FOR LINEAR PCPPS
OVER F2

In this section, we sketch the proof of length-soundness trade-off for linear
PCPPs over the binary field. Although we consider only a special case, this
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section captures most of the ideas that are used for proving our main results.
As mentioned earlier, this section serves only as a warm-up to the latter
sections and the reader may skip the section.

THEOREM 4.1 (SPECIAL CASE OF THEOREMS 2.9 AND 2.11). Given any
0 < ε < 1 and a subexponential function � ∈ 2o(n), let C ⊆ F

n
2 be an F2-

linear property (code) with dual distance at least
(

c log �
ε

)
(c large enough con-

stant) and such that for some δ0 ∈ (0, 1/2) they are not trivially δ0-testable.
Let s[�](δ) denote the best soundness of a (3, n, �)-linear verifier for C, that is,
s[�](δ) = SC

linV (3, �, δ). Then for every δ ≤ δ0,

s[�](δ) ≤ 1
3

+ ε.

Consequently, the soundness deficiency of linear verifiers with subexponential
proofs is 1/6− o(1).

The following lemma is the main ingredient in the proof of Theorem 4.1.

LEMMA 4.2 (INSPECTIVE VERIFIABILITY IMPLIES TESTABILITY). Let C ⊆
F

n
2 be any linear code. For every q, � ∈ Z+, ε ∈ (0, 1] and s : (0, 1] → [0, 1],

the following holds. If C has a linear q-query inspective PCPP of length � and
soundness function s, then C has a O( q log �

ε
)-tester with soundness function s−ε.

Before proving the lemma, we outline the proof of Theorem 4.1. Fix a
(3, n, �)-linear verifier V = 〈Q, D〉 for C, and denote by s the soundness function
of V . Let μ denote the probability that V makes an inspective query, namely,
the probability (with respect to distribution D) that V probes at least one
word bit.

Now, for two possible ranges of μ and for any δ ≤ 1/2 we design a “fooling”
word-proof pair (w ◦ π), such that: (i) δ(w, C) ≥ δ; and (ii) V accepts (w ◦ π) with
probability 2/3− ε, concluding the proof.
Case μ ≤ 2/3. Fix any δ ≤ 1/2 and consider the distribution over word-proof
pairs (w ◦ π), where π is a legitimate proof of some fixed codeword w′ ∈ C and
w = (wδ + r) is a sum of a fixed δ-far (from C) word wδ and a randomly chosen
codeword r ∈ C. It is not hard to show that

(1) w is δ-far from C;
(2) for any subset I ∈ [n] of at most 3 coordinates of w, the 2|I| possible values

of wI are distributed uniformly (over the choices of r).

Clearly, all noninspective queries are accepted with probability 1 since π is a
legitimate proof. In addition, item 2 implies that the inspective queries are
accepted with probability 1/2, since the constraints are all linear. Therefore,
s(δ) ≤ μ/2 ≤ 1/3.
Case μ > 2/3. Let Vi be a (3, n, �)-linear inspective verifier derived from V as
follows: Vi picks a query Q ∈ Q according to distribution D. If Q is inspective
then Vi proceeds exactly as V . Otherwise, Vi immediately accepts (without
making the query Q). Let si denote the soundness function of Vi. Since Vi

is inspective, by Lemma 4.2 we get that for any
(

3 log �
ε

)
-query tester T for C
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having soundness function sT , si ≤ sT + ε. We also know (by definition of C ’s
dual distance and non-trivial testability) that any such tester (with perfect
completeness) has soundness sT ≡ 0. Therefore, s(δ) ≤ μ · (0+ε)+1−μ ≤ 1/3+ε
for any δ ≤ 1/2.

4.1 Proof of Lemma 4.2

As mentioned in the introduction, we are going to view an inspective q-query
linear verifier as a graph. An inspective graph (defined below) is a represen-
tation of an inspective verifier in the sense that a single invocation of the ver-
ifier corresponds to picking a random edge in the graph and making the set of
queries given by the names of the end-vertices and the edge-label. The defini-
tion that follows is a special case of the more general definition in Section 5.3.
This definition is only for this warm-up section.

Definition 4.3 (Inspective Graph—special case for F2). A (q, n, �)-inspective
graph is a triplet G = (V, E, LE) where (V = {0, 1, . . . , l}, E) is an undirected
multigraph graph and LE : E→ (F2)n≤q is a mapping of the edges to F2-vectors
of dimension n and weight at most q.

A word w ∈ F
n
2 induces a labeling L(w)

E : V → F2 as follows: L(w)
E (e) =

〈LE(e), w〉 =
∑n

i=1 LE(e)[i] ·w[i].
A labeling π : V → F2 is said to satisfy edge e = (u, v) with respect to w if

π(u) + π(v) + L(w)
E = π(u) + π(v) + 〈LE(e), w〉 = 0. A labeling π : V → F2 is said

to α-satisfy G with respect to w if it satisfies an α-fraction of the edges with
respect to w.

G is said to be a (q, n, �)-inspective proof graph for property P with soundness
function s : (0, 1]→ [0, 1] if the following two conditions are satisfied.
Perfect Completeness. For all w ∈ P there exists a a labeling π : V → F2 such
that π 1-satisfies G with respect to w.
Soundness. For all w ∈ �n, no labeling π : V → F2 (1 − s(δ(w, P))-satisfies
G with respect to w where δ(w, P) denotes the minimal fractional Hamming
distance between w and an element of P.

The correspondence between linear inspective PCPPs and inspective graphs
is as follows. First, assume without loss of generality that the verifier V =
〈Q, D〉 has uniform distribution D over Q. This can be assumed by replacing Q
with a multiset of queries where the number of copies of a query Q reflects the
probability with which the Q is performed. The vertices V \ {0} correspond to
the � locations of the proof. The vertex 0 is a special vertex which corresponds
to the bit 0. Any labeling of the vertices V (that satisfies π(0) = 0) corresponds
to a proof. However, we may assume π(0) = 0 without loss of generality for the
following reason. If a labeling π α-satisfies G, so does the labeling π +b defined
as follows: (π + b )(v) = π(v) + b . Hence, we might assume that the labeling π
satisfies π(0) = 0.

Recall that for a given query, i-size denotes the number of proof bits read by
that query. The edges of the graph correspond to the (inspective) tests of the
verifier. Non-self-loop edges in E ∩ (V \ {0} × V \ {0}) correspond to inspective
queries of i-size 2, non-self-loop edges in E ∩ (V × {0}) to inspective queries of
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i-size 1 while the self-loop edges correspond to inspective queries of i-size 0.
On input w, the verifier chooses an edge of the graph uniformly at random and
checks if the labeling π satisfies the edge with respect to w. The multiplicity of
an edge is proportional to the probability with which the PCPP verifier chooses
the corresponding test.

CLAIM 4.4. Let G = (V, E, LE) be a (q, n, �)-inspective proof graph for some
linear code C. Suppose the vertices v1, v2, . . . , vk, vk+1 = v1 form a cycle in the
graph (V, E), then the vector

∑k
i=1 LE(vi, vi+1) is a member of the dual code C⊥.

Before proceeding we need some notation. For any graph G, let V(G) and
E(G) denote the set of vertices and set of edges respectively of the graph G. For
any subset V ′ ⊆ V of vertices, let G(V ′) denote the induced subgraph of G on
the vertex set V ′. Also, let E(V ′) = E(G(V ′)). Similarly, let E(V ′, V \ V ′) denote
the set of edges between V ′ and V \V ′ (i.e., E(V ′, V \V ′) = E∩(V ′ × (V \V ′)). For
any connected graph G, define the radius of G (denoted by rad(G)) as follows:

rad(G) = min
v∈V

max
u∈V

d(u, v),

where d(u, v) denotes the length of the shortest path between vertices u and v.
Notice that for any connected graph, the distance between any two vertices is
at most twice the radius of the graph.

Lemma 4.2 is proved by first showing that the inspective proof graph can be
decomposed into components with small radii, and then transforming any in-
spective proof graph with components of small radii into a tester (Lemma 4.6).

LEMMA 4.5 (DECOMPOSITION LEMMA [LEIGHTON AND RAO 1999]). For
every ε ∈ (0, 1) and every multigraph G = (V, E), there exists a subset of
edges E′ ⊆ E of size at most ε|E|, such that every component of the graph
GDecomp. = (V, E \ E′) has radius strictly less than log |V|/ε. The graph GDecomp.

is said to be an ε-decomposition of G.

The proof of Lemma 4.5 is deferred to Section 6.2. Now we show how to
convert an inspective graph into a tester. The query complexity of the tester
will be bounded by the length of the cycles in the graph. Thus, a graph with
small radius will result in a tester of low query complexity.

LEMMA 4.6 LOW RADIUS IMPLIES TESTABILITY. Let C ⊆ F
n
2 be a linear

code and G = (V, E, L) be a (q, n, �)-inspective proof graph for the code C with
soundness function s. If each of the components of the graph (V, E) has radius
smaller than r, then C is 2qr-testable with soundness function s.

PROOF. Let G = (V, E, L) be a (q, n, �)-inspective proof graph for C with
soundness s such that each component of the graph G = (V, E) has radius
smaller than r. Having radius smaller than r implies that there exists a span-
ning forest F = (V, E′) of G such that the height of each tree in F is less
than r.

Consider the mapping τ : E → F
n
2 of the edges to F2-vectors of length n

defined as follows: If e ∈ E(F), then τ (e) = 0. Otherwise, E(F)∪{e} contains a
unique cycle C. Then, define τ (e) =

∑
e∈C L(e). Since each tree of F is of height
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less than r, any such cycle C is of length at most 2r. Also, from the definition
of inspective proof graphs we have that L(e) is a vector of weight at most q.
Hence, τ (e) is a vector of weight at most 2qr and τ is a mapping from E to
(Fn

2)≤2qr.
We define a tester TG based on the graph G as follows: On input w ∈ F

n, it
selects an edge e uniformly at random from E(G) and checks if 〈τ (e), w〉 = 0.
If yes it accepts, e it rejects. We now prove that TG is a 2qr-tester for C with
soundness function s.

Query Complexity. Since each τ (e) is of weight at most 2qr, the tester queries
at most 2qr locations of the word w.

Completeness. Suppose w ∈ C. We have by Claim 4.4, that for each cycle C in
G, we have

∑
e∈C L(e) is a member of the dualcode C⊥. Therefore, 〈τ (e), w〉 = 0

for all edges e in G. In other words, the tester TG accepts with probability 1.

Soundness. Let w be any word. Consider the labeling π : V → F2 defined as
follows: For each tree T in the forest F, choose an arbitrary vertex v in T and
set π(v) = 0. For any other vertex u in the tree, let v = v0, v1, . . . , vk = u be the
unique path in the tree T from v to u. Define π(u) = 〈∑ L(vi, vi+1), w〉. It is easy
to check that if the tester TG accepts w with probability α, then the labeling π
α-satisfies G with respect to π . The soundness of the tester now follows from
the soundness of the inspective proof graph G.

Lemma 4.2 now easily follows from the Decomposition Lemma and Lemma 4.6.

5. PROOF OF LENGTH-SOUNDNESS TRADE-OFF

The proof is organized as follows. In Section 5.1 we define constraint graphs,
which are later used to analyze inspective verifiers. In Section 5.2 we prove an
auxiliary lemma that allows us to convert any verifier V = 〈Q, D〉 into a verifier
V ′ = 〈Q′, D′〉 such that V ′ achieves almost the same soundness as V , but the size
of Q is linear in the length of the proof, and the distribution D′ is uniform over
Q. In Section 5.3 we prove that the soundness of inspective verifiers goes to
zero as long as the proof length is subexponential. Based on these, we prove
Theorem 2.9 in Section 5.4 and complete several missing proofs in Section 5.5.

5.1 Constraint Graphs and the Generalized Decomposition Lemma

Definition 5.1 (Constraint Graphs). A constraint graph is a pair φ = (G, C),
where G = (V, E) is a directed multigraph and C =

{
ce : {0, 1}2 →

{accept, reject} | e ∈ E
}

is a set of binary constraints associated with the edges
of G.

If an assignment π : V → {0, 1} satisfies a δ-fraction of the constraints in φ

then we say that π δ-satisfies φ. Namely, π is δ-satisfying if
∣∣∣{e = (u, v) ∈ E :

ce

(
π(u), π(v)

)
= accept

}∣∣∣ = δ|E|.
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A constraint graph φ is unsatisfiable if there is no assignment that
1-satisfies it. We also say that φ is ε-far from being satisfiable if there is no
assignment π : V → {0, 1} that δ-satisfies φ, for any δ ≥ 1− ε.

For abbreviation, we say that a constraint graph φ′ = (G′, C′) is a subgraph of
φ = (G, C) if G′ is a subgraph of G, and in addition, for every e ∈ E(G′) the
corresponding constraints ce ∈ C and c′e ∈ C′ are identical.

The following main lemma is a natural generalization of the decomposition
lemma of Leighton and Rao [1999], which is useful when analyzing graphs
with general edge-constraints (rather than linear ones). The lemma states
that any constraint graph which is far from being satisfiable has a small un-
satisfiable subgraph (witness of unsatisfiability).

LEMMA 5.2. Let φ = (G, C) be a constraint graph which is ε-far from being
satisfiable. Then φ has an unsatisfiable subgraph φ′ with at most 4 log |E(G)|

ε
+ 2

edges.

Observe that an immediate corollary of Lemma 5.2 is that if a 2-CSP for-
mula with m constraints is ε-far from being satisfiable (meaning that any as-
signment falsifies at least εm constraints) then it has an unsatisfiable subset
of at most 4 log m

ε
+ 2 constraints.

Before proving the lemma we need some definitions.

Definition 5.3 (Forcing). Let φ = (G, C) be a constraint graph, and let u ∈
V(G) and bu ∈ {0, 1} be a vertex of G and a value assigned to it, respectively.
For every vertex v ∈ V(G) \ {u} and any value b v ∈ {0, 1}, we say that (u← bu)
forces (v ← b v ) if

—the partial assignment π : {u, v} → {0, 1} defined as π(u) = bu and π(v) = b v

does not violate any constraint in C
—the partial assignment π ′ : {u, v} → {0, 1} defined as π ′(u) = bu and π ′(v) =

1 − b v violates at least one constraint ce ∈ C (and the violated constraints
are called the forcing constraints).

We can naturally extend the notion of forcing for subsets of vertices as fol-
lows. Let U ⊂ V(G) be a subset of G’s vertices, and let πU : U → {0, 1} be
a partial assignment on U. For every vertex v ∈ V(G) \ U and every value
b v ∈ {0, 1} we say that πU forces (v ← b v ) if there exists a vertex u ∈ U such
that (u← πU(u)) forces (v ← b v ).

In some cases there is no immediate forcing between assignments, but there
is an indirect implication. We say that (u← bu) implies (v ← b v ) if there are
k > 0 vertices x1, x2, . . . , xk ∈ V \ {u, v} and k values b1, b2, . . . , bk ∈ {0, 1} such
that:

—(u← bu) forces (x1← b1)
—for all 1 ≤ i < k, (xi← bi) forces (xi+1← bi+1)
—(xk← bk) forces (v ← b v ).

We also define the implication path from (u ← bu) to (v ← b v ) as the corre-
sponding path of k + 1 forcing edges from u to v.
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If for some pair of vertices u, v ∈ V and a value bu ∈ {0, 1} the assignment
(u ← bu) implies both (v ← 0) and (v ← 1), it means that (u← bu) leads to
contradiction, and hence any assignment π for which π(u) = bu cannot satisfy
φ. In this case we call the pair of corresponding implication paths a contradic-
tion cycle. Furthermore, if both (u← 0) and (u← 1) lead to contradiction, then
clearly the constraint graph is unsatisfiable. In this case, we call the pair of
corresponding contradiction cycles a witness of unsatisfiability.

Given a subset U ⊂ V, a partial assignment πU : U → {0, 1} has no consis-
tent extensions if one of the following holds.

—πU forces two different values on some v ∈ V \U.
—there exists an edge e = (v1, v2) ∈ E(V \ U) such that πU forces the values

b1, b2 on v1, v2 respectively, and ce(b1, b2) = reject.

Notice that in both cases there is a contradiction cycle witnessing the inexten-
sibility of πU .

If πU has consistent extensions, then we denote by f (U) � {v1, . . . , vk} ⊆
V \U the set of all vertices that are forced by πU to have the values b v1 , . . . , b vk

respectively, and we define the forced extension of πU which is an assignment
πU∪ f (U) : U ∪ f (U)→ {0, 1} given by

πU∪ f (U)(v) =
{

πU(v) , v ∈ U
b v , v ∈ f (U) .

PROOF OF LEMMA 5.2. Assume for the sake of contradiction that φ = (G, C)
is the smallest constraint graph that violates the conditions of Lemma 5.2.
Namely, φ is ε-far from being satisfiable, but it has no unsatisfiable subgraph
with at most 4 log |E(G)|

ε
+2 edges. Pick an arbitrary vertex r ∈ V(G) and consider

the executions FindContradiction(r, 0) and FindContradiction(r, 1) of the
following algorithm, which is basically a BFS algorithm starting from vertex r
that proceeds along forcing edges.

FindContradiction(r,b):

(1) Set U = {r}, i = 0, and define a partial assignment πU as πU(r) = b .
(2) i = i + 1.
(3) If i > log|E(G)|

ε
output FAIL.

(4) If πU has a consistent extension πU∪ f (U) to the set f (U) of the forced neigh-
bors of U:
(a) If |E( f (U),U)| ≥ ε|E(U)| then set U = U ∪ f (U), set πU = πU∪ f (U) and

go to step 2.
(b) E output FAIL.

(5) E there must be a contradiction cycle W of length9 at most 2i + 1 ≤
2log|E(G)|

ε
+ 1 for the assignment (r← b ). Output W .

9The bound on the cycle length is due to the fact that every implication in U has a corresponding
implication path of length at most i that follows the iterative extension of πU .
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If both executions FindContradiction(r, 0) and FindContradiction(r, 1)
reached step 5 then we have a pair of contradiction cycles (each of length at
most 2 log |E(G)|

ε
+ 1) for both (r ← 0) and (r← 1). Joined together, these cycles

form a witness of unsatisfiability of length at most 4 log |E(G)|
ε

+ 2, contradicting
our assumption that φ has no unsatisfiable subgraphs with at most 4 log |E(G)|

ε
+2

edges. Therefore, one of the executions must output FAIL either in step 3 or in
step 4b.

Since in every iteration of the algorithm |E(U)| grows by a multiplicative
factor of at least (1+ε), after log|E(G)|

ε
> log(1+ε) |E(G)| iterations we get |E(U)| >

|E(G)|, which is of course impossible. This completely rules out the possibility
of outputting FAIL in step 3.

Finally, assume towards a contradiction that one of the executions outputs
FAIL in step 4b. Consider the induced subgraphs GU = G(U) and GV\U =
G(V \U), and the corresponding induced constraint graphs φU = (GU, CU) and
φV\U = (GV\U , CV\U ) where CU and CV\U are the sets of all original constraints
associated with E(U) and E(V \U) respectively.

According to Algorithm FindContradiction(r,b), the set U is enlarged only
when the assignment πU has a consistent extension. This fact preserves the
invariant that the constraints {ce : e ∈ E(U)} are always satisfied by πU . There-
fore πU completely satisfies the subgraph φU . On the other hand, by the mini-
mality condition on φ, φV\U must be 1− ε satisfiable by some assignment πV\U .
Let π : V(G)→ {0, 1} be the union of πU and πV\U , defined as

π(v) =
{

πU(v) , v ∈ U
πV\U (v) , v ∈ V \U .

Since the execution was terminated at step 4b, π falsifies at most ε|E(U)| of
the constraints on E(U, V \U). So the total number of unsatisfied constraints
by π is bounded by ε|E(V \ U)| + ε|E(U, V \ U)| ≤ ε|E(G)|, contradicting our
initial assumption.

5.2 The Uniform (Sparse) Verifier Lemma

In this section we claim that without loss of generality we can concentrate
on (q, n, �)-verifiers that make roughly O(n + �) uniformly distributed queries.
This assumption eases the application of Lemma 5.2, which bounds the size of
contradiction witnesses as a function of number of edges (rather than number
of vertices as in Lemma 4.5).

We note that a similar lemma was already proved by Goldreich and Sudan
[2006] for (q, n, 0)-verifiers (property testers).

LEMMA 5.4. For every γ > 0 and property P ⊂ �n, if P has a (q, n, �)-verifier
V = 〈Q, D〉 with perfect completeness and soundness function s : (0, 1]→ [0, 1]
then P also has a (q, n, �)-verifier V ′ = 〈Q′,U〉 with the following properties.

(1) V ′ has perfect completeness.
(2) V ′ has soundness function s′ that for all δ satisfies s′(δ) ≥ s(δ)− γ .
(3) The number of queries in Q′ is �γ−2(n + �) log |�|�.
(4) U is the uniform distribution over Q′.
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PROOF. We prove the lemma by the following probabilistic argument. Con-
struct a multiset Q′ by choosing independently at random γ−2(n + �) log |�|
queries Q ∈ Q according to distribution D. Given Q′, the new verifier V ′
operates similarly to V , but instead of choosing queries from Q according to
distribution D, it chooses them from Q′ according to the uniform distribution.

Since the original verifier V had perfect completeness and since Q′ ⊆ Q, V ′
has perfect completeness too. Conditions 3 and 4 of the lemma follow from the
definition of Q′ and V ′. We only need to show that the soundness function s′ of
V ′ satisfies s′(δ) ≥ s(δ)−γ for all δ > 0. Clearly, this is satisfied for all δ for which
s(δ) ≤ γ because the rejection probability is always nonnegative. Therefore, to
complete the proof it is enough to show that with positive probability the set
Q′ satisfies the following: For every word w such that s

(
δ(w, P)

)
> γ and every

proof π , at least a
(
s
(
δ(w, P)

)
− γ

)
-fraction of the queries in Q′ reject the pair

w◦π (we say that the query Q = (I, C) rejects the pair w◦π if C(w◦π |I) = reject).
Fix a word w ∈ �n such that s

(
δ(w, P)

)
> γ and a proof π ∈ ��. For

every Q ∈ Q, we define the indicator variable xQ,w◦π which is equal to 1 if
Q rejects the pair w ◦ π . Notice that once w is fixed, for any proof π we have
EQ∼DQ[xQ,w◦π ] ≥ s

(
δ(w, P)

)
.

We also define an indicator variable Iw◦π which equals 1 if the fraction
of queries in Q′ that reject the pair w ◦ π is at least s

(
δ(w, P)

)
− γ . Since

the queries in Q′ were chosen independently (according to distribution D), by
Chernoff ’s bound for any w and any π we have

Pr
Q′

[Iw,π = 0] = Pr
Q′

[( 1
|Q′|

∑
Q∈Q′

xQ,w◦π
)

< s
(
δ(w, P)

)
− γ

]

≤ exp(−2γ 2|Q′|) = exp(−2γ 2γ−2(n + �) log |�|) < |�|−n−�

and if we apply the union bound over all word-proof pairs w ◦ π we get

Pr
Q′

[Iw,π = 0 for some pair w ◦ π as above] < |�|n+� · |�|−n−� < 1.

We conclude that there must be a query set Q′ that satisfies the required
soundness condition.

5.3 Best Soundness for Inspective Verifiers (Proof of Theorem 2.18)

THEOREM 2.18 (RESTATED BEST INSPECTIVE SOUNDNESS WITH SHORT
PROOFS). Let P ⊆ {0, 1}ε{0, 1}n be a d-universal property, and let q ∈ Z+.
Let si denote the best soundness of a (q, n, �)-inspective verifier for P, i.e.,
si(δ) = SP

Vi
(q, �, δ). Then for every δ ∈ [0, 1],

si(δ) ≤ inf
ε>0

{
4 log(ε−2(n + �))

d
q−1 − 2

+ ε

}
.
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Before proceeding to the proof, we need to define an inspective verifier,
which is basically the graph that is induced by a verifier (recall that we had
defined a special case of inspective graphs (Definition 4.3) in the warm-up
section). These graphs play a crucial role in the proofs of Lemma 6.3 and
Theorem 2.20.

Definition 5.5 (Inspective Graph). Let V = 〈Q, D〉 be a (q, n, �)-verifier. For
Q = (I, C) of i-size 2 we say Q generates the pair I ∩ [n + 1, n + �]. Similarly, if
Q is of i-size 1 we say it generates the pair (0, I∩ [n+ 1, n+ �]). A query of i-size
different than 1, 2 generates no pair. The inspective graph of V , denoted GV , is
the multigraph with vertex set V = {0} ∪ [n + 1, n + �] and edge set E being the
multiset of pairs generated by Q.

PROOF. Let P ⊂ {0, 1}n be a d-universal property, and let us fix ε ∈ (0, 1) and
δ ∈ (0, 1). Let Vi be an inspective (q, n, �) verifier for P and let Vi

′ = 〈Q′,U〉
be the corresponding “sparse” verifier (which is also inspective) described in
Lemma 5.4 for γ = ε.

Fixing a δ-far word w defines a constraint graph φw = (G, C) over �+1 vertices
as follows.

—G is the inspective graph induced by Vi
′ as per Definition 5.5.

—For every e = (u, v) ∈ E(G), the constraint ce evaluates to accept whenever
the valuation π(u), π(v) and the word w satisfy the query in Q′ (with i-size 2)
that generates the edge e.

—For every e = (0, v) ∈ E(G), the (unary) constraint ce evaluates to accept
whenever the valuation π(v) and the word w satisfy the query in Q′ (with
i-size 1) that generates the edge e.

Notice that according to Lemma 5.4, the number of edges in E(G) is bounded
by ε−2(n + �). In addition, every constraint ce depends on at most q − 1
word bits.

Since the minimal rejection probability of δ-far words by Vi
′ is si(δ)− ε, the

constraint graph φw must be (si(δ) − ε)-far from being satisfiable. Hence by
Lemma 5.2, φw has an unsatisfiable subgraph φ with at most

4 log |E(G)|
si(δ)− ε

+ 2 ≤ 4 log
(
ε−2(n + �)

)
si(δ)− ε

+ 2

edges. Let i1, i2, . . . , ik ∈ [n] be the word bits associated with the constraints
(edges) of the unsatisfiable subgraph φ, where k ≤ (q − 1) ·

(
4 log(ε−2(n+�))

si(δ)−ε
+ 2
)
.

It is clear that any word w′ ∈ {0, 1}n that agrees with w on indices i1, i2, . . . , ik
cannot be in the property P. Therefore, because of the universality condition k
must be larger than d, implying

(q− 1) ·
(

4 log
(
ε−2(n + �)

)
si(δ)− ε

+ 2

)
> d
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or equivalently

si(δ) <
4 log

(
ε−2(n + �)

)
d

q−1 − 2
+ ε.

COROLLARY 5.6. Let α ∈ (0, 1) be a positive constant and let P � {Pn ⊆
{0, 1}n : Pn is αn−universal} be a family of αn-universal properties. The proper-
ties in P have no subexponential inspective PCPP’s achieving constant sound-
ness. Namely, for every ε′ ∈ (0, 1] there are β > 0 and n0 ∈ N such that for any
property Pn ∈ P , n > n0 the following is satisfied for all δ ∈ [0, 1]:

SPn
Vi

(
3, 2βn, δ

) ≤ ε′.

PROOF. Fix an arbitrary ε′ > 0, and set β > 0 and n0 ∈ N such that all n > n0
satisfy the inequality

2βn < 2
ε′
8 ( αn

2 −2)+2 log ε′−2 − n.

Since Pn is a αn-universal property, we can apply Theorem 2.18 (with q = 3
and ε = ε′/2) and get that for every δ ∈ [0, 1]:

SPn
Vi

(
3, 2βn, δ

) ≤ 4
(

log(n + 2βn)− 2 log ε′ + 2
)

αn
2 − 2

+ ε′/2,

additionally, according to our choice of β and n0 we also have:

4
(

log(n + 2βn)− 2 log ε′ + 2
)

αn
2 − 2

≤ ε′/2,

completing the proof.

5.4 Proof of Theorem 2.9

THEOREM 2.9 (RESTATED). Let α ∈ (0, 1) be a positive constant and let P �
{Pn ⊆ F

n
2 : n ∈ N} be a family of linear properties (codes) with dual distance at

least αn and such that for some δ0 ∈ (0, 1) they are not trivially δ0-testable. The
properties in P have no 3-query sub-exponential PCPP’s achieving soundness
larger than 1/3. Namely, for every ε ∈ (0, 1] there are β > 0 and n0 ∈ N such
that for any property Pn ∈ P , n > n0 the following is satisfied for all δ ∈ [0, δ0]:

SPn
(
3, 2βn, δ

) ≤ 1
3

+ ε.

Before proceeding to the proof of Theorem 2.9 we need the following lemma,
which is proved in the next section.

LEMMA 5.7. Let V be a (3, n, �) verifier for a Fp-linear property P ⊆ Fn
p with

dual distance at least 4. Let μ be the probability that V makes an inspective
query (i.e., one that makes at most two queries into the proof). Then, using sV to
denote the soundness function of V , we have for any δ < 1/2

sV (δ) ≤ min
{

1− μ + SP
Vi

(3, �, δ) ,

(
1− 1

p

)
μ

}
.
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PROOF OF THEOREM 2.9. Fix any ε ∈ (0, 1], and let β > 0 and n0 be the
parameters promised by Corollary 5.6, so that SPn

Vi

(
3, 2βn, δ

)
< ε for every

n > n0.
Notice that the right hand side of the inequality in Lemma 5.7 (p = 2 in

our case) is maximized when the two terms are equal, that is, when μ = 2
3

(
1 +

SP
Vi

(3, �, δ)
)
. Therefore, for n > n0 and proofs of length 2βn,

sV (δ) ≤ 1
3

(
1 + SPn

Vi

(
3, 2βn, δ

))
<

1
3

+ ε,

where the second inequality follows from Corollary 5.6.

5.5 Proof of Lemma 5.7

PROOF. To see why sV (δ) ≤ 1− μ + SP
Vi

(3, �, δ) convert V = 〈Q, D〉 into an in-
spective verifier V ′ as follows. V ′ picks Q ∼ D in the same manner that V does.
If Q is an inspective query, V ′ performs it. Otherwise, V ′ performs the triv-
ial (inspective) query that always accepts (without reading any information).
Since V ′ is inspective, we conclude sV

′ ≤ SP
Vi

(3, �, δ), that is, there exists some
input w that is δ-far from C and a proof π such that (w◦π) is rejected by V ′ with
probability at most SP

Vi
(3, �, δ). Even if V rejects all noninspective queries on

this particular pair, this can only increase the soundness by an additive factor
1− μ, implying the first inequality.

To show that sV (δ) ≤ (1− 1
p )μ we need the following two lemmas, which we

prove in Sections 5.5.1 and 5.5.2.

LEMMA 5.8. Let C ⊂ Fn
p be a linear code. For any x ∈ Fn

p and any codeword
w ∈ C,

δ(x + w, C) ≥ δ(x, C).

LEMMA 5.9. Let C ⊂ F
n
p, and let I ⊂ [n] be a subset of indices such that there

does not exist a non-zero dual codeword u ∈ C⊥ \ {0} such that supp(u) ⊆ I.
Then, for any x ∈ Fn

p and any y ∈ F
|I|
p ,

Prw∼UC[(x + w)|I = y] = p−|I|,

and in particular, for any y ∈ F
|I|
p ,

Prw∼UC[w|I = y] = p−|I|.

One example of a set I (as stated in the hypothesis of Lemma 5.9) is any set of
at most d indices when the dual distance of C is d + 1.

The proof proceeds as follows. First we fix a δ-far word x ∈ Fn
p, and pick

ŵ ∈ C uniformly at random. Let π denote the legitimate proof for the codeword
ŵ. Then, we pick another codeword w′ ∈ C uniformly at random, and set w �
x + w′. Recall that according to Lemma 5.8, w is δ-far from C. We use the word-
proof pair (w ◦ π) to fool the verifier V = 〈Q, D〉, that is, to make it reject with
probability at most (1− 1

p)μ.
Let Q0,Q1,Q2,Q3 be a partition of Q, where Qi contains all queries that

read i bits from the proof. Since the verifier V has perfect completeness, all
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queries in Q3 must be satisfied because π is a legitimate proof and all queries
in Q0 (tester queries) must be satisfied because the dual distance of C is larger
than three. In addition, the queries in Q2 are satisfied with probability at least
1/p, since according to Lemma 5.9 for every i ∈ [n], wi = ŵi with probability
1/p. To complete the proof, it is enough to show that every query Q ∈ Q1 is
satisfied with probability at least 1/p over the choice of ŵ and w′.

Let Q = (I, C) be a query in Q1. Let i1, i2 be the indices in I ∩ [n] and let
j be the index in I ∩ [n + 1, n + �], so that the query Q is satisfied whenever
C(wi1, wi2 , π j) = accept. For every β ∈ Fp, let kβ denote the number of assign-
ments (α1, α2) ∈ F2

p for which C(α1, α2, β) = accept.
Recall that we chose π by the following distribution: pick a codeword ŵ ∈ C

uniformly at random, and set π to be the legitimate proof for codeword ŵ.
Let ηβ denote the probability that when ŵ ∈ C is picked uniformly at ran-
dom, in the legitimate proof π of ŵ we have π j = β. Perfect completeness and
the assumption that the dual distance of C is larger than two imply that for
any of the p2 pairs wi1 , wi2 ∈ Fp there must be at leat one π j ∈ Fp for which
C(wi1, wi2 , π j) = accept. Therefore, the average value of kβ is at least p. That is,∑

β ηβkβ ≥ p.
Now let us fix x ∈ Fn

p, ŵ ∈ C and the corresponding π j ∈ Fp, and analyze what
happens when we pick a random w′ ∈ C. Recall that w = x + w′, and hence by
Lemma 5.9 the values wi1 and wi2 are distributed uniformly and independently
of each other. Therefore, for any fixed π j ∈ Fp we have

Prw′[C(wi1, wi2 , π j) = accept] =
kβ

p2 .

So, the overall acceptance probability is

Prŵ,w′[C(wi1 , wi2, π j) = accept] =
∑

β

ηβ · kβ

p2 ≥ 1/p

as required.
We constructed a distribution of word-proof pairs (w ◦ π) in which all words

are δ-far from C, and all proofs are legitimate proofs. Any query from Q3 is
satisfied with probability 1 under this distribution, and all other queries are
satisfied with probability at least 1/p. So by linearity of expectation, we con-
clude that there must be a pair (w◦π) (where w is δ-far from C) that is accepted
by the verifier V with probability at least (1− μ) · 1 + μ · 1

p = 1− (1− 1
p)μ.

5.5.1 Proof of Lemma 5.8.

PROOF. Assume towards a contradiction that for some x ∈ Fn
p and w ∈ C

we have δ(x + w, C) < δ(x, C). Let w′ ∈ C be the closest codeword to x + w,
i.e. a codeword for which δ(x + w,w′) = δ(x + w, C). Observe that δ(x + w,w′) =
δ(x, w′ + (−w)), and w′ + (−w) ∈ C. This, together with our initial assumption,
leads to the following contradiction,

δ(x, C) > δ(x + w, C) = δ(x + w,w′) = δ(x, w′ + (−w)) ≥ δ(x, C).
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5.5.2 Proof of Lemma 5.9.

PROOF. We only need to prove the second part of the lemma since the first
part follows from the second part, as a constant shift of the uniform distribu-
tion yields the uniform distribution. Now to the proof of the second part. Let
H be the parity check matrix for the code C, that is, C = {w|Hw = 0}. Since
there does not exist any nonzero dual codeword u such that supp(u) ⊆ I, we
have that the system of equations Hw = 0 and {wi = yi|i ∈ I} for any y ∈ F

|I|
p

is consistent. Denote by CI=y the solution set to this system of equations. It is
easy to see that CI=y = wy +CI=0̄ where wy ∈ CI=y. Thus, the sets CI=y, as y varies
over F

|I|
p is an equipartition of the code C. Thus, Prw∼UC[w ∈ CI=y] = p−|I| for all

y. This proves the second part.

6. PROOF OF LENGTH-SOUNDNESS TRADE-OFF FOR LINEAR VERIFIERS

We start by restating our main theorem regarding linear verifiers and its main
corollary. In Section 6.1 we reduce both of these results to our main technical
lemma, Lemma 6.3. To prove the lemma we need (a variant of) the decomposi-
tion lemma of Leighton and Rao [1999] and this is proved in Section 6.2. After
setting the ground with the decomposition lemma, we complete our proof by
proving the main lemma in Section 6.3.

THEOREM 2.11 (RESTATED). Let P ⊆ Fn be a F-linear property. Let
s[�](δ) denote the best soundness of a (3, n, �)-linear verifier for P, i.e., s[�](δ) =
SP

linV (3, �, δ). Let t[q](δ) denote the best soundness of a q-tester for P, i.e.,
t[q](δ) = SP (q, 0, δ). Then

s[�](δ) ≤ inf
ε>0

{
t
[

36 log �

ε

]
(δ) +

1
2
·
(

1− 1
|F| + ε

)}
.

COROLLARY 2.12 (RESTATED). Let SUBEXP denote the set of subexponen-
tial functions, i.e., functions satisfying f (n) = 2o(n). For every prime field Fp

there exists a family of Fp-linear properties P such that

s-Def.Fp−linV[P, SUBEXP](δ) ≥ δ − 1
2
·
(

1− 1
p

)
,

Consequently, the maximal deficiency of linear verifiers with subexponential
proofs is at least 1

2 · (1− 1/p):

max-s-Def.Fp−linV[Fp-linear, SUBEXP] ≥ 1
2
·
(

1− 1
p

)
.

We start by proving that the main theorem implies the corollary.

PROOF OF COROLLARY 2.12. Take P = {Pn | n ∈ Z+} to be a family of linear
properties satisfying both (a) (dim(Pn)/n)−−−→n→∞0 and (b) the best soundness of
an o(n)-tester for Pn goes to 0 as n goes to ∞. One construction of such a
family is based on properties that are not trivially testable and have vanishing
rate (i.e., satisfy (a)) and linear dual distance, that is, the minimal weight of
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a nonzero element in P⊥n is �(n). Any o(n)-tester with perfect completeness
for such a property must have soundness function 0. A different construction
is obtained by taking P to be a family of random Low Density Parity Check
(LDPC) codes that satisfy (a). These codes were shown by Ben-Sasson et al.
[2005] to satisfy (b). Let wn ∈ F

n be δ-far from Pn. The verifier in Theorem
2.8 achieves soundness ≥ δ on w when the proof-length is exponential in n. On
the other hand, take εn to be a sequence approaching 0 when n approaches∞
while satisfying 36 log �(n)

εn
= o(n). Such a sequence exists because �(n) = 2o(n). In

this case Theorem 2.11 shows that the upper bound on soundness of (3, n, �(n))-
verifiers approaches 1

2 ·
(
1− 1

p

)
as n approaches∞. This proves the first part

of the corollary. To get the second part notice that (a) implies that a random
w′ ∈ Fn

p has distance δ = ((1 − 1/p) − o(1)) from Pn
10. This completes the

proof.

6.1 Proof of Theorem 2.11

Overview. Given a verifier V and a word w that is δ-far from P we need to de-
scribe a proof π such that V accepts w ◦ π with relatively high probability. We
divide this into two cases. If a large fraction of the queries of V are inspective,
we try to satisfy these queries and care little about the rejection probability on
the other queries. This part is argued in Lemma 6.3. On the other hand, if V
rarely queries w, we present a proof that is good for some codeword w′ ∈ P and
hope that V doesn’t notice the difference between w and w′. Details follow.

Notation. When discussing F-linear verifiers, we view a word-proof pair as a
vector w◦π ∈ Fn+� by setting (w◦π)i = (w◦π)[i]. A q-query constraint Q = (I, C)
can be represented by a vector vQ ∈ Fn+� such that the support of vQ , denoted
supp(vQ), is I and

C(w ◦ π |I) = accept⇔ 〈vQ, w ◦ π〉 =
n+�∑
i=1

(vQ)i(w ◦ π)i = 0.

Abusing notation, we identify Q with its representing vector and say “(w ◦ π)
satisfies Q” whenever 〈Q, (w ◦ π)〉 = 0. For I′ ⊂ [n + �] we denote supp(Q) ∩ I′
by suppI′(Q). Similarly, let 〈Q, w ◦ π〉I′ =

∑
i∈I′ Qi · (w ◦ π )i, where Qi denotes

the ith entry of the vector Q. Finally, for P a linear space we denote its dual
space by P⊥.

To simplify the proof of Theorem 2.11 we assume our verifier makes no
redundant queries according to the following definition and claim.

Definition 6.1. A query Q ∈ Fn+�, |supp(Q)| ≤ 3 is called redundant for the
property P if |supp[n](Q)| > 0, |supp[n+1,n+�](Q)| > 0 and there exists u ∈ P⊥, u �=
0 with supp(u) ⊆ supp[n](Q).

10This follows from the fact that the expected distance of a random word w from a fixed codeword
c ∈ Pn is exactly 1−1/p. Applying Chernoff, we obtain that Pr[δ(w, c) ≥ (1−1/p)−o(1)] = 1−o(1).
Applying union bound (over all the codewords in Pn) we obtain δ(w, Pn) = (1−1/p)−o(1) with high
probability (since (dim(Pn)/n)−−−→n→∞0).

ACM Transactions on Computation Theory, Vol. 1, No. 2, Article 7, Pub. date: September 2009.



7: 34 · E. Ben-Sasson et al.

If the dual distance of P is greater than 2 then all queries are nonredundant.
The next claim says that even if the dual distance of P is 2, we may assume
without loss of generality that its verifier makes no redundant queries. Its
proof comes after the proof of Theorem 2.11.

CLAIM 6.2. If P has a (3, n, �)-linear verifier with soundness function s, then
P has a (3, n, �)-linear verifier that makes no redundant query and has sound-
ness function s.

PROOF OF THEOREM 2.11. Let V = 〈Q, D〉 be a 3-query linear verifier. Let
μ = PrQ∼DQ[supp[n](Q) �= ∅]. Fix ε > 0. We prove the following bound:

s[�](δ) ≤ min
{

t
[

36 log �

ε

]
(δ) + ε + (1− μ) ·

(
1− 1
|F|
)

,

t
[

36 log �

ε

]
(δ) + μ ·

(
1− 1
|F|
)}

. (1)

The right-hand side attains its maximal value when

μ =
1
2

+
ε

2
(
1− 1

|F|
) .

Plugging this value of μ back into (1) completes the proof of Theorem 2.11.
Now we argue Equation (1). The first element on the right hand side

of Equation (1) is given by the following lemma that is proved in the next
subsection.

LEMMA 6.3. Let V = 〈Q, D〉 be a F-linear verifier for the F-linear property
P ⊆ Fn with soundness function s, let ε > 0 and let μ = PrQ∼DQ[supp[n](Q) �= ∅].
Then

s(δ) ≤ t
[

36 log �

ε

]
(δ) + ε + (1− μ) ·

(
1− 1
|F|
)

.

To complete the proof we only need to show

s[�](δ) ≤ t
[

36 log �

ε

]
(δ) + μ ·

(
1− 1
|F|
)

. (2)

Let w0 be δ-far from P. By linearity, the all-zero proof π0 = 0 is a legiti-
mate proof (accompanying the zero codeword). Consider the soundness of V
when presented with w ◦ π0 where w is the sum of w0 and a random word
w′ ∈ P. Every query Q, supp[n](Q) = ∅ is satisfied by the legitimate proof π0.
Additionally, every query Q, supp[n+1,n+�](Q) = ∅ corresponds to a test, so the

accumulated rejection probability of such tests is at most t
[

36 log �
ε

]
(δ) because

increasing query complexity does not decrease soundness. Finally, consider a
query Q such that both supp[n](Q) and supp[n+1,n+�](Q) are not empty. By Claim
6.2 we may assume V is nonredundant, so there is no u ∈ P⊥, u �= 0 such that
supp(u) ⊆ supp[n](Q). Since P is linear, by Lemma 5.9 for a random w′ ∈ P
we know that 〈Q, w′〉[n] is a random element of F. This implies the rejection
probability over such tests is at most μ · (1 − 1/|F|). This gives Equation (2),
and Theorem 2.11 follows.
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PROOF OF CLAIM 6.2. Let V be (3, n, �)-linear verifier for P using redundant
queries. We replace these queries, one at a time, without increasing query
complexity and length and without decreasing soundness.

Let Q be redundant. Since
∣∣supp[n](Q)

∣∣ ≤ 2 and there exists u ∈ P⊥,
supp(u) ⊆ supp[n](Q) there exists a nonzero vector Q′ ∈ span((P⊥, 0l), Q) such
that

∣∣supp[n](Q
′)
∣∣ <

∣∣supp[n](Q)
∣∣ and supp[n+1,n+�](Q

′) = supp[n+1,n+�](Q) where
by (P⊥, 0l) we refer to the space {(p, 0l)|p ∈ P⊥}, i.e., elements of P⊥ appended
by � zeroes. Replace Q by Q′. It is easy to check that the completeness and
the soundness are unaltered. Thus, each time there exists a redundant query,
we can iteratively reduce its support in [n] (i.e.,

∣∣supp[n](Q′)
∣∣ <

∣∣supp[n](Q)
∣∣)

till the size of the support in [n] reduces to 0, in which case it is no longer a
redundant query.

We end this subsection with the formal proof of Theorem 2.19.

PROOF OF THEOREM 2.19. Follows from Lemma 6.3 by noticing that in the
case of an inspective verifier we have μ = 1.

6.2 The Decomposition Lemma

In the proof of Lemma 6.3 and later on in the proof of Theorem 2.20 we use
the decomposition lemma of Leighton and Rao [1999], stated next. The proof
is included here because we use a stronger version than the one appearing in
Leighton and Rao [1999] and Trevisan [2005]. Our version deals with multi-
graphs yet bounds the radius of the decomposed graph as a function of the
number of vertices. The proof is along the lines of Leighton and Rao [1999].
We will use the same notation as in Section 4.1 (introduced after Claim 4.4).

LEMMA 4.5 (RESTATED DECOMPOSITION LEMMA [LEIGHTON AND RAO
1999]). For every ε ∈ (0, 1) and every multigraph G = (V, E), there exists a
subset of edges E′ ⊆ E of size at most ε|E|, such that every component of the
graph GDecomp. = (V, E \ E′) has radius strictly less than log |V|/ε. The graph
GDecomp. is said to be an ε-decomposition of G.

PROOF. Assume for contradiction that for some 0 < ε < 1, there exists
a graph G which cannot be decomposed into components of radius less than
log |V|/ε by removing at most ε-fraction of the edges. Let G be such a graph
with the minimum number of vertices.

Let v be a vertex of maximum degree in V. Hence, deg(v) ≥ 2|E|/|V|.
Now, consider the set of vertices V ′ defined by the following sequence of
operations. In the following, �(V ′) denotes the neighborhood of V ′ (i.e., �(V ′) =
{u ∈ V|(u, v) ∈ E for some v ∈ V ′}).
(1) Set V ′ ← {v}∪�(v)
(2) While |E(V ′, V \ V ′)| > ε|E(V ′)| do

Set V ′ ← V ′∪�(V ′)
(3) Output V ′

Clearly, |E(V ′, V \ V)| ≤ ε|E(V ′)|. Let t be the number of iterations of the
while loop in the above procedure. Clearly, t+ 1 upper bounds the radius of the
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induced subgraph G(V ′) because d(v, u) ≤ t + 1 for all u ∈ G(V ′). Furthermore,
each iteration of the while loop increases the number of edges in G(V ′) by a
multiplicative factor of at least (1 + ε). Hence,

|E(V ′)| > (1 + ε)t deg(v) ≥ (1 + ε)(rad(G(V′))−1)
(

2|E|
|V|

)
≥ (1 + ε)rad(G(V′)) · |E||V|

where in the last inequality we have used the fact 2 > (1 + ε). However, since
E(V ′) ⊆ E, we have that rad(G(V ′)) < log |V|/ log(1 + ε) < log |V|/ε. Here, we
have used the fact that log2(1 + ε) > ε for all ε ∈ (0, 1).

Now, consider the induced subgraph G′ = G(V \ V ′). Since |V \ V ′| < |V|, by
the minimality condition we have that there exists a set of edges E′′ ⊆ E(G′)
of size at most ε|E(G′)|, such that every component of the graph G′Decomp. =
(V \ V ′, E(G′) \ E′′) has radius strictly less than log |V \ V ′|/ε.

Let E′ = E(V ′, V \ V ′)∪E′′. We first observe that |E′| ≤ ε|E(V ′)| + ε|E(G′)| ≤
ε|E|. Furthermore, the components of the graph GDecomp. = (V, E \ E′) are
G(V ′) and the components of G′Decomp.. Hence, their radius is strictly less than
log |V|/ε. This contradicts the assumption that G is a counterexample to the
lemma. Hence, proved.

6.3 Proof of Lemma 6.3

Overview. Given verifier V = 〈Q, D〉 we construct a tester V ′ = 〈Q′, D〉 with a
one-to-one correspondence between the queries of V and those of V ′. The query
complexity of V ′ is O

(
log �

ε

)
. Additionally, we construct a set of proofs � such

that for every proof π ∈ �, a (1 − ε)-fraction of inspective queries Q satisfy
〈Q, w ◦ π〉 = 〈Q′, w ◦ π〉, where Q′ is the test of V ′ corresponding to Q. Finally,
we show that if π is a random proof from � then the expected acceptance
probability of a noninspective query is ≥ 1/|F|. Summing up, the difference
between the rejection probability of the tester V ′ and that of the verifier V is
at most ε + (1− 1/|F|)(1− μ) and this completes our proof. The construction of
V ′ and � uses (i) the F-linearity of the constraints and (ii) the ε-decomposition
of the inspective graph of V given in Lemma 4.5. We now focus on these two
aspects.

Decomposed F-Linear Verifiers. Let V be a F-linear verifier and let G = G(V)
be its inspective graph from Definition 5.5. Recall that if

∣∣supp[n+1,n+�](Q)
∣∣ = 1

then Q generates an edge between 0 and a vertex i ∈ [n + 1, n + �] whereas if∣∣supp[n+1,n+�](Q)
∣∣ = 2 both vertices of the edge generated by Q lie in [n + 1, n +

�]. (If
∣∣supp[n+1,n+�](Q)

∣∣ �= 1, 2 then Q generates no edge.)
Let G′ be an ε-decomposition of G as per Lemma 4.5 with E′ being the set

of removed edges,
∣∣E′∣∣ ≤ ε |E|. Let V0, V1, . . . , Vm be the set of connected com-

ponents of G′, where V0 is the component to which the vertex 0 belongs. Let
F0, . . . , Fm be spanning trees of V0, V1, . . . , Vm respectively, of radius at most
log �

ε
each. (The existence of these trees is guaranteed by Lemma 4.5.) Let

r1, . . . , rm be arbitrary roots for F1, . . . , Fm and set r0 = 0 to be the root of F0.
To describe V ′ and � we define two types of constraints that belong to span(Q).
They are described next.
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Vertex Constraints. For i ∈ V j \
{
rj
}

let Q(i) be the set of constraints that
generate the edges along the unique path in Fj leading from rj to i. Let Q(i) be
the unique nonzero vector in span(Q(i)) satisfying

(Q(i))i′ =
{ −1 i′ = i

0 i′ ∈ [n + 1, n + �] \ {rj, i
} (3)

Such a constraint can be shown to exist by performing Gaussian elimination
to remove the variables appearing in internal nodes along the path from rj to
i. Formally, we can obtain Q(i) as follows: Let i0 = rj, ii . . . , it = i be the internal
nodes along the path form rj to i and let Q1, Q2, . . . , Qt be the queries that
generate the edges (i0, i1), (i1, i2), . . . , (it−1, it). We can assume wlog that query
Qk is of the form akπik−1 − πik + bkw jk = 0 for some ak, bk ∈ F and jk ∈ [n]. We
can now perform Gaussian elimination to eliminate πik, k = 1, . . . , t− 1 from
the constraints Q1, . . . , Qt to obtain

(∏t
k=1 ak

)
πi0 − πit +

∑
k ckw jk = 0 for some

ck ∈ F or equivalently
(∏t

k=1 ak
)
πrj − πi +

∑
ck

w jk = 0. This is the constraint
Q(i). We call Q(i) the vertex constraint corresponding to i and record for future
reference its basic properties.

CLAIM 6.4 (BASIC PROPERTIES OF VERTEX CONSTRAINT). For i ∈ V j \
{
rj
}

we have

(a) {i} ⊆ supp[n+1,n+�](Q(i)) ⊆ {i, rj
}
,

(b) |supp[n](Q(i))| ≤ 4 log �
ε

and
(c) rj ∈ supp[n+1,n+�](Q(i)) iff j �= 0.

PROOF. Part (a) follows by construction. Part (b) holds because a query Q
that generates an edge has

∣∣supp[n](Q)
∣∣ ≤ 2 and Q(i) lies in the span of at most

2 log �
ε

constraints. Regarding part (c), clearly j = 0 implies rj �∈ supp[n+1,n+�](Q(i))
because 0 is not in the support of any query. For the other direction, if j �= 0
notice every constraint has precisely two vertices in its support. Additionally,
every internal vertex along the path from rj to i, but for i and rj, appears in
the support of exactly two constraints. Thus, any Q ∈ span(Q(i)) satisfying
Equation (3) must have rj in its support.

Edge Constraints. For e = (i, i′) ∈ V j× V j an edge in G′ generated by Q, let

Q̂(e) =

⎧⎨
⎩

Q + Qi · Q(i) i′ = rj

Q + Qi′ · Q(i′) i = rj

Q + Qi · Q(i) + Qi′ · Q(i′) i, i′ �= rj

and Q(e) =

{
Q̂(e) (Q̂(e))rj = 0
−1
Q̂r j
· Q̂(e) (Q̂(e))rj �= 0 .

In words, Q(e) is the unique linear combination of Q and Q(i), Q(i′) (if one or
both of the latter two are defined) that satisfies

Q(e)rj ∈ {−1, 0} and Q(e)i′′ = 0 for i′′ ∈ [n + 1, n + �] \ {rj
}
. (4)

We call Q(e) the edge constraint corresponding to e and record for future
reference its basic properties.

CLAIM 6.5. For e = (i, i′) ∈ V j × V j we have (a) supp[n+1,n+�](Q(e)) ⊆ {rj
}
, (b)

|supp[n](Q)| ≤ 8 log �
ε

and (c) if j = 0 then supp[n+1,n+�](Q(e)) = ∅.
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PROOF. Let Q be the constraint that generates e and notice supp[n+1,n+�](Q) ={
i, i′
}
. For part (a) assume both i and i′ are not rj. Recall from Claim 6.4 that

supp[n+1,n+�](Q(k)) ⊆ {rj, k
}

and Q(k)k = −1 for all k ∈ V j \ {rj}. This implies
supp[n+1,n+�](Q(e)) = supp[n+1,n+�](Q̂(e)) = supp[n+1,n+�](Q + Qi · Q(i) + Qi′ · Q(i′)) ⊆
{rj}. The case when one of i, i′ is equal to rj is handled similarly and this proves
part (a). Part (b) follows because Q(e) lies in the span of at most 4 log �

ε
con-

straints and each constraint has
∣∣supp[n](Q)

∣∣ ≤ 2. Part (c) follows from part (a)
by observing that 0 is not in the support of any constraint.

Forced Components. The construction of the tester V ′ and the corresponding
proofs � depend on a partition of the components of G′ into forced and unforced
components, defined next.

Definition 6.6 (Forced Component). If e ∈ V j × V j satisfies supp[n+1,n+�]
(Q(e)) = {rj} we say e forces V j. If V j contains an edge that forces it we say
V j is forced. Pick an arbitrary ordering of edges and set the designated forcing
edge of V j to be the smallest edge that forces it. If a component V j is not forced,
it is said to be unforced.

Construction of the Tester V ′. We construct V ′ = 〈Q′, D〉 from V = 〈Q, D〉
in three consecutive steps. Assume without loss of generality that V1, . . . , Vk

are the forced components of G′ for some k ≤ m and let e1, . . . , ek be
the corresponding designated forcing edges. (Notice that Claim 6.5(c) im-
plies that V0 is unforced.) First we convert each query Q into a query
Q(1) with supp[n+1,n+�](Q(1)) ⊆ {r1, . . . , rm}. Then we convert Q(1) into a Q(2)

with supp[n+1,n+�](Q(2)) ⊆ {rk+1, . . . , rm}. Finally, we replace Q(2) by Q′ with
supp[n+1,n+�](Q′) = ∅, i.e., Q′ is a test. All the time we keep the same distri-
bution over tests, that is, D(Q′) = D(Q(2)) = D(Q(1)) = D(Q). The detailed
construction follows.

(1) For every query Q set

Q(1) = Q +
∑

i∈[n+1,n+�]\{r1,...,rm}
Qi · Q(i).

(2) For every query Q(1) set

Q(2) = Q(1) +
k∑

j=1

(Q(1))rj · Q(e j).

(3) For every query Q(2) set

Q′ =
{

0 |supp[n+1,n+�](Q(2))| > 0
Q(2) otherwise

Next we bound all of the important parameters of V ′ except for its soundness
function.

CLAIM 6.7 (BASIC PROPERTIES OF V ′). V ′ is a tester with perfect complete-
ness and query complexity ≤ 36 log �

ε
.
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PROOF. V ′ is a tester because the last conversion step enforces supp(Q′) ⊆
[n] for all Q′ ∈ Q′. Perfect completeness of V ′ follows from the perfect complete-
ness of V by F-linearity because Q′ ⊆ span(Q).

Finally, the bound on query complexity follows from Claims 6.4(b), 6.5(b) by
noting that Q′ lies in the span of Q and at most 3 vertex constraints and 3
edge constraints. Indeed,

Q(1) ∈ span
(
Q,
{
Q(i) | i ∈ supp[n+1,n+�](Q) \ {r1, . . . , rm}

})
,

and since
∣∣supp[n+1,n+�](Q)

∣∣ ≤ 3 we conclude Q(1) is in the span of Q and at most
3 vertex constraints. By Claim 6.4(a) and Equation (3) we have

supp[n+1,n+�]

(
Q(1)

)
⊆ {rj | ∃i ∈ supp[n+1,n+�](Q) ∩ V j

}
, (5)

so
∣∣supp[n+1,n+�](Q)

∣∣ ≤ 3 also implies |supp[n+1,n+�](Q(1))| ≤ 3. This implies
Q(2) lies in the span of Q(1) and at most 3 edge constraints and our proof is
complete.

Construction of Proof-Set �. To argue soundness of V ′ we introduce a family
of proofs designed to fool inspective verifiers. Recall that F0, . . . , Fm are span-
ning trees of the components V0, . . . , Vm. Let F = ∪ jFj be the spanning forest
formed by the union of these spanning trees.

Definition 6.8. Let V1, . . . , Vk be the forced components of G′ and let
e1, . . . , ek be their respective designated forcing edges. A proof π is called
F-compliant for w if w ◦ π satisfies every constraint that generates an edge in
F ∪ {e1, . . . , ek}ε{e1, . . . , ek}. Let � = �(w) denote the set of F-compliant proofs
for w.

The next claim shows that F-compliant proofs exist for any word and
describes the structure of these proofs. This structure will be used to analyze
the soundness of V ′.

CLAIM 6.9. For every w ∈ Fn and αk+1, . . . , αm ∈ F there exists a unique
F-compliant proof for w such that πrj = α j for k < j≤ m.

PROOF. We first observe that the set of constraints that generate the edges
of F, denoted Q(F), are linearly independent.

We will first show that for any α1, α2, . . . , αm ∈ F, there exists a unique
proof π such that πrj = α j for j = 1, . . . , m and π satisfies all the constraints
in Q(F). We need to consider component V0 (whose root is r0) separately.
Let e = (0, i) ∈ F0 be generated by Q. There is a unique setting of πi

that satisfies Q because
∣∣supp[n+1,n+�](Q)

∣∣ = 1. Once all vertices at distance
1 from r0 have been fixed, there is a unique assignment to π j, j ∈ V0 that sat-
isfies Q(F0) — the set of constraints that generate edges in F0. Now, set the
values of the roots of the remaining trees πr1, . . . , πrm to α1, . . . , αm respectively.
By linear independence of the constraints in each of Fi, we have that the above
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partial proof setting can be uniquely extended to a proof that satisfies all the
constraints in Q(F) (This can be proved by induction on the length of the paths
in F).

But we need to satisfy not only the constraints in Q(F), but also the con-
straints that generate the forcing edges e1, . . . , ek. We will show that for each
1 ≤ j≤ k, the constraint that generates the forcing edge e j, forces a particular
value α j for the corresponding root rj (hence, the name forcing edge).

Let 1 ≤ j ≤ k. Consider e j = (i, i′) — generated by Q — that is the
designated forcing edge of V j. By Definition 6.6 and Equation (4), we have
supp[n+1,n+�](Q(e)) = {rj}, so there is a unique setting for πrj that satisfies Q and
Q(Fj). Let α j be this unique value.

Given any αk+1, . . . , αm, set the value of the roots πrj = α j for j = 1 to m where
α j, j = 1, . . . , k are as defined above and α j, j = k+1, . . . , m are the given values.
From before, we have that there exists a unique proof π such that πrj = α j for
j = 1, . . . , m and π satisfies all the constraints in Q(F). But this proof also
satisfies the constraints that generate the forcing edges e1, . . . , ek due to way
we chose the α j’s for j = 1, . . . , k. This proves the claim.

F-compliant proofs are important because on “typical” queries the output of
Q on w ◦ π is equal to the output of the test Q′ performed on w. This is argued
in our next claim.

CLAIM 6.10. If π is F-compliant for w and Q ∈ Q has one of the following
properties:

(1) supp[n+1,n+�](Q) = ∅, or
(2) every i ∈ supp[n+1,n+�](Q) belongs to a forced component, or
(3) Q generates an edge e ∈ E \ E′.

Then

〈Q′, w ◦ π〉 = 〈Q, w ◦ π〉.

PROOF. We prove each case separately.

(1) By construction Q′ = Q(2) = Q(1) = Q and the claim follows.
(2) By assumption and Claim 6.4(a) and (5), we have supp[n+1,n+�](Q(1)) ⊆
{r1, . . . , rk}. Suppose rj ∈ supp[n+1,n+�](Q(1)). Definition 6.6 and Equation (4)
imply (Q(e j))rj = −1, so by construction rj �∈ supp[n+1,n+�](Q(2)). This is ar-
gued for each rj ∈ supp[n+1,n+�](Q(1)) and shows supp[n+1,n+�](Q(2)) = ∅. By
construction this implies Q′ = Q(2). Notice Q(2) = Q + Q′′ where Q′′ is a
linear combination of constraints that generate edges in F ∪ {e1, . . . , ek}.
We conclude

〈Q′, w ◦ π〉 = 〈Q(2), w ◦ π〉 = 〈Q, w ◦ π〉 + 〈Q′′, w ◦ π〉 = 〈Q, w ◦ π〉, (6)

The last equality follows because π is F compliant for w.
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(3) We may assume e belongs to component V j that is not forced because
the other case (of forced V j) was argued in part 2. By construction
Q(1) = Q̂(e). By assumption e does not force V j, so by Definition 6.6 we
have supp[n+1,n+�](Q(e)) = ∅. By construction Q′ = Q(2) = Q(1) and the
F-compliancy of π implies as argued in Equation (6) that 〈Q′, w ◦ π〉 =
〈Q(2), w ◦ π〉 = 〈Q, w ◦ π 〉. This completes the proof.

We are ready to argue the soundness of V ′ and complete the proof of
Lemma 6.3.

CLAIM 6.11 (SOUNDNESS). Let σ = PrQ∼DQ[|supp[n+1,n+�](Q)|ε|supp[n+1,n+�]
(Q)| ≤ 3]. There exists an F-compliant proof π such that

Pr[V ′w◦π = reject] ≥ Pr[Vw◦π = reject]− ε − (1− 1/|F|) · σ.

PROOF. If π is F-compliant for w then by Claim 6.10 the output of V and V ′
on w ◦ π may differ only if the query performed is one of two types. The first
type is a query that generates an edge e ∈ E′. The fraction of these queries
is at most ε. The second type is a query with

∣∣supp[n+1,n+�](Q)
∣∣ = 3 and there

exists i ∈ supp[n+1,n+�](Q) such that i belongs to an unforced component V j. Let
σ ′ denote the fraction of queries of the second type and notice σ ′ ≤ σ . We can
already conclude

Pr
[
V ′w◦π = reject

] ≥ Pr
[
Vw◦π = reject

]− ε − σ,

but to reach the stronger claim stated above we need one additional observa-
tion regarding constraints of the second type.

Let Q be such a constraint and suppose i ∈ supp[n+1,n+�](Q) belongs to the
unforced component V j. Consider the uniform distribution over F-compliant
proofs obtained by randomly fixing values αk+1, . . . , αm for πrk+1, . . . , πrm and ex-
tending these values to an F-compliant proof for w by Claim 6.9. Notice the
value assigned to πi depends linearly on the value of πrj. Thus, assigning a
uniformly random value to πrj implies 〈Q, w ◦ π〉 is a random variable ranging
uniformly over F, that is, Q accepts w ◦ π with probability 1/|F|. This im-
plies the expected fraction of constraints of the second type that are satisfied is
1/|F|. We conclude the existence of an F-compliant proof that is rejected by at
most a (1−1/|F|)-fraction of the queries of the second type. This completes our
proof.

PROOF OF LEMMA 6.3. Let w be δ-far from P. Let V ′ be the tester con-
structed from V as described earlier in this subsection. Let π be the F-
compliant proof for w satisfying Claim 6.11. Notice σ ≤ 1 − μ so this claim
implies

s(δ) ≤ Pr[Vw◦π = reject] ≤ Pr[V ′w◦π = reject] + ε + (1− 1/|F|)(1− μ).

The proof is completed by recalling from Claim 6.7 that V ′ is a
(

36 log �
ε

)
-tester,

hence Pr[V ′w◦π = reject] ≤ t
[

36 log �
ε

]
(δ).
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7. PROOF OF LENGTH-SOUNDNESS TRADE-OFF FOR UNIQUE VERIFIERS

In this section, we prove the length-soundness trade-off for 3-query
unique verifiers (Theorem 2.13). As in the case of linear verifiers, we first
prove a similar theorem for the special case of inspective unique verifiers
(Theorem 2.20) and then extend this result to general 3-query unique verifiers.

7.1 Best Soundness for Inspective Unique Verifiers (Proof of Theorem 2.20)

THEOREM 2.20 (RESTATED BEST SOUNDNESS WITH UNIQUE INSPECTIVE
VERIFIERS). Let P ⊆ �n be a property. Let si(δ) denote the best soundness of
a (3, n, �)-unique inspective verifier for P, i.e., si(δ) = SP

uniqVi
(3, �, δ). Let t[q](δ)

denote the best soundness of a q-tester for P, i.e., t[q](δ) = SP (q, 0, δ). Then for
any si(δ) > ε

si(δ) ≤ inf
ε>0

{
4t

[
10 log �(

si(δ)− ε
)
ε
· ln (2|�|)

]
(δ) + ε

}
.

The conclusion of Theorem 2.20 has s(δ) on both sides of the inequality,
which makes it rather cumbersome to deal with. So, we obtain the follow-
ing corollary of Theorem 2.20, which is a more convenient form to work with
(for instance to derive Theorem 2.13).

COROLLARY 7.1. Let α ∈ (0, 1) and let P � {Pn ⊆ Fn : n ∈ N} be a family of
F-linear properties (codes) with dual distance at least αn and such that for some
δ0 ∈ (0, 1) they are not trivially δ0-testable. For every ε > 0, there exists a β > 0
and n0 ∈ N, such that for any property Pn, n > n0, the following is satisfied for
all δ ∈ (0, δ0],

SPn
uniqVi

(
3, 2βn, δ

) ≤ 2ε.

PROOF. Set β = αε2/(10 ln(2|F|)). Suppose the corollary is fa for this setting
of β, i.e., there exists an inspective unique (q, n, 2βn) verifier with soundness
s(δ) > 2ε. Now, since s(δ) > 2ε, we have that 10βn

(s(δ)−ε)ε · ln (2|F|) < 10βn
ε2 · ln (2|F|) =

αn. Define l = 2βn. Since the dual distance of Pn is at least αn, we have
t
[

10 log l
(s(δ)−ε)ε · ln (2|F|)

]
(δ) = 0. Thus, it follows from Theorem 2.20 that s(δ) ≤ ε

contradicting our assumption that s(δ) > 2ε. Hence, proved.

PROOF OF THEOREM 2.20. The outline of the proof is similar to the linear
case. Given an inspective unique verifier for some property P, we construct
using the graph decomposition lemma (Lemma 4.5) a tester for P. The lower
bound on the soundness of the tester implies a lower bound on that of the
inspective verifier.

Let P ⊂ �n and let V = 〈Q, D〉 be an inspective unique (q, n, �) verifier for P
and let s denote the soundness of the verifier V . We may assume without loss of
generality that D is the uniform distribution by repeating queries in Q propor-
tional to their probability. Let G = G(V) be the inspective graph corresponding
to uniqVi, as per Definition 5.5. For any ε, let Gε be an ε-decomposition of G
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as per Lemma 4.5. Note that the soundness of the verifier corresponding to
Gε is at least s′ = s− ε. Let V0, V1, . . . , Vm be the components of Gε, where V0
is the component which contains the vertex 0. Let F1, F2, . . . , Fm be spanning
trees of the components V0, V1, . . . , Vm respectively, of radius at most log �/ε.
Let r1, r2, . . . , rm be arbitrary roots for F0, F1, . . . , Fm respectively and set 0 to
be the root r0 of F0. Furthermore, let p0, p1, . . . , pm be the normalized number
of edges in components V0, V1, . . . , Vm respectively (i.e., pi = |E(Vi)|/|E(Gε)|).

Corresponding to every nontree edge e = (u, v) in E(Vi) \ Fi, there exists a
unique cycle in the graph Fi + {e}. Call this cycle ce, the cycle completed by
edge e.

For i = 1, . . . , m and any σ ∈ � let πσ
i : Vi → � be the unique labeling of

the vertices of component Vi such that (a) the root ri is labeled by σ and (b) all
the edge constraints of the tree edges of Fi are satisfied by πσ

i . Note that once
the label of the root is fixed, it induces a labeling on all the vertices of the tree
such that all tree-edge constraints are satisfied due to the uniqueness property
of the verifier. πσ

i is this induced labeling where the root vertex is labeled by
σ . For the component V0, note that there is a unique labeling of the vertices
of V0 that satisfies all tree-edge constraints. Let π0 : V0 → � be this unique
labeling.

We are now ready to describe the tester T that distinguishes w ∈ P from
w that are δ-far from P. Recall that the soundness of the inspective verifier
corresponding to Gε is at least s(δ)− ε. We call this quantity s′.

Tester T
Oracle: w : [n]→ �

(1) Choose i ←R {0, . . . , m} according to the probability distribution
(p0, . . . , pm).

(2) Choose k = 2
s′ ln(2|�|) edges in E(Vi)\Fi (i.e., the nontree edges) uniformly

at random (independently and with repetition).
(3) Let C be the set of all cycles completed by the above k nontree edges. Let

EC be the set of all edges contained in the cycles C (i.e., EC = {e|∃c ∈ C, e ∈
c}).

(4) Let QC be the set of constraints of V that generate the set of edges EC .
Let IC be the set of indices in [n] probed by the constraints QC (i.e., IC =(⋃

(I,C)∈QC I
) ∩ [n]).

(5) Query the word w for all indices j ∈ IC
(6) If i = 0

Accept if the partial assignments w : IC → � and π0 : V0 → � do not
violate any constraint in QC

(7) E (i.e., i �= 0)
Accept if there exists a σ ∈ � such that the partial assignments
w : IC → � and πσ

i : Vi→ � do not violate any constraint in QC

The query complexity of the tester T is at most twice the number of edges E
because each edge is labeled by at most 2 indices in [n], so this query complex-
ity is bounded above by 2k · (2 log �/ε + 1) ≤ (10 log �/s′ε) · ln(2|�|).
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Clearly, this tester has perfect completeness. Consider any word w : [n]→ �
that is δ-far from P. We show below that the tester T rejects w with prob-
ability at least (s(δ) − ε)/4 = s′/4. Given this fact, the theorem follows since
t
[

10 log �
s′ε · ln(2|�|)

]
(δ) upper bounds the rejection probability of any tester.

Since w is δ-far from P, it follows from the soundness of the inspective graph
Gε, that for any labeling π : V(Gε) → �, at least s′ = s(δ) − ε fraction of the
edge constraints are violated.

Suppose Vi is the component chosen in step 1. Consider the inspective
graphs G(Vi) corresponding to the components Vi. Let si be the soundness of
G(Vi). Also assume si ≥ s′/2. We will later show that it sufficient if we restrict
our attention to those components that satisfy si ≥ s′/2.

Assume i �= 0. Consider any σ ∈ �. Since the soundness of G(Vi) is si,
the labeling πσ

i violates at least si fraction of edge constraints. (note that only
nontree edges are violated by πσ

i ). Hence, for a random nontree edge, the prob-
ability that it is not violated by πσ

i is at most 1− si. Therefore, the probability
that all k edges chosen in step 2 are not violated by πσ

i is at most (1−si)k ≤ e−sik.
Hence, the probability that there exists a σ ∈ � such that all k edges are not
violated by πσ

i is at most |�|e−sik ≤ 2−2si/s′ since si ≥ s′/2.
If i = 0, the analysis is similar to above except that we do not have the final

union bound. Hence, the probability that all k edges are not violated by π0 is
at most e−s0k ≤ 2−2s0/s′/|�| < 2−2s0/s′ since s0 ≥ s′/2.

We now need to relate si to s′. Towards this end, observe that
∑

pisi denotes
the soundness of the entire graph which is at least s′ = s − ε. Hence, with
probability at least s′/2, the component i chosen in step 1 satisfies si ≥ s′/2.
Hence, with probability at least s′/2 over the choice of component in step 1 the
tester rejects with probability at least 1 − 2−2(s′/2)/s′ ≥ 1/2. Hence, T rejects w
with probability at least (s′/2) · (1/2) = s′/4 = (s(δ) − ε)/4. This completes the
proof of the Theorem.

7.2 Proof of Theorem 2.13

We are now ready to prove Theorem 2.13.

THEOREM 2.13 (RESTATED). Let α ∈ (0, 1) be a positive constant and let
P � {Pn ⊆ Fn : n ∈ N} be a family of F-linear properties (codes) with dual
distance at least αn and such that for some δ0 ∈ (0, 1) they are not trivially δ0-
testable. For every ε > 0, there exists a β > 0 and n0 ∈ N such that for any
property Pn ∈ P , n > n0 the following is satisfied for all δ ∈ (0, δ0]:

SPn
uniqV

(
3, 2βn, δ

) ≤ 2(1 + 2ε)
3

·
(

1− 1
|F|
)

.

PROOF. Let V be a unique verifier for Pn and let sV (δ) its soundness function.
Let μ be the fraction of inspective queries made by V . We have from Lemma
5.7 that

sV (δ) ≤ min
{

1− μ + SPn
uniqVi

(
3, 2βn, δ

)
, μ

(
1− 1
|F|
)}

.
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The above inequality is maximized when the two sides are equal, i.e.,

μ =
(
1 + SPn

uniqVi

(
3, 2βn, δ

))
/(2− 1/|F|).

For this setting of μ, we have

sV (δ) ≤
(
1 + SPn

uniqVi

(
3, 2βn, δ

)) ·
(
1− 1

|F|
)

(
2− 1

|F|
)

≤
(
1 + SPn

uniqVi

(
3, 2βn, δ

)) ·
(
1− 1

|F|
)

3
2

[Since |F| ≥ 2]

Corollary 7.1 implies that SPn
uniqVi

(
3, 2βn, δ

) ≤ 2ε which proves the theorem.

8. SHORT LINEAR PCPPS

In this section, we show if we relax the restriction of soundness from optimal
soundness to some soundness bounded away from 1, then, in fact, every F2-
linear property has a 3-query linear verifier of quasilinear proof length and
perfect completeness.

It has been shown [Dinur 2007; Ben-Sasson and Sudan 2008] that if P ⊂
{0, 1}n is a property that can be decided by a nondeterministic circuit of size t,
then P has a (3, t, tpolylog t)-verifier V with perfect completeness and constant
soundness. Constant soundness means that for any δ there exists ε that de-
pends only on δ, and is independent of n, such that the soundness function of
V satisfies s(δ) > ε. Next we claim that if P is F2-linear then V can be assumed
without loss of generality to be F2-linear too.

In what follows, a F2-linear circuit is a multioutput circuit with fan-in and
fan-out at most 2 comprised of gates that compute F2-addition. The property
decided by a F2-linear circuit P is defined to be the space of inputs that cause
all output gates to evaluate to 0. Notice that every F2-linear property P ⊂ F

n
2

can be decided by such a circuit of size at most n2.

LEMMA 8.1 (SHORT LINEAR PCPPS). For every δ > 0 there exists ε = ε(δ) >
0 such that the following holds. Every F2-linear property P ⊆ F

n
2 that can be

decided by a F2-linear circuit of size m has a 3-query linear verifier accessing a
proof of length � = m · polylog (n), that has perfect completeness and soundness
function satisfying s(δ) ≥ ε.

Moreover, the proof oracle is linear in the input oracle, that is, there exists a
F2-linear transformation T : F

n
2 → F

�
2 such that every w ∈ P is accepted by the

verifier in conjunction with the proof oracle πw = T(w).

PROOF SKETCH. The results of Dinur [2007] and Ben-Sasson and Sudan
[2008] imply all but the F2-linearity in the lemma stated above. It suffices to
modify their PCPP construction so that the proof πw for a word w ∈ P will be
given by a F2-linear transformation T. Then, consider the property

P′ ⊂ F
n+�
2 , P′ = {w ◦ πw |w ∈ P}.
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By construction, P′ is F2-linear. Hence, Ben-Sasson et al. [2005, Theorem 5.3]
implies P′ has a 3-query F2-linear tester and this tester is a (3, n, �), F2-
linear verifier for P with perfect completeness and soundness function as
claimed.

Transforming the proof oracle of Ben-Sasson and Sudan [2008] into an F2-
linear one involves inspecting the various steps in its construction and making
sure each of them is F2-linear. This has already been argued for the closely
related construction of Ben-Sasson et al. [2006] in Proposition 8.14 there. The
key element in Ben-Sasson and Sudan [2008] that does not appear in Ben-
Sasson et al. [2006] is the construction of PCPPs for Reed-Solomon codes. This
construction can be verified to be given by a linear transformation by inspect-
ing Section 6. In particular, let us follow the proof of Proposition 6.9 in Ben-
Sasson and Sudan [2008] using the notation there. Let F be the finite field of
characteristic 2 used there (and denoted there by GF(2�)). Let p : F → F be
the evaluation of a polynomial P. The coefficients of the bivariate polynomial
Q are obtained by a F-linear transformation applied to the coefficients of P,
because by construction (in Proposition 6.2) Q = P mod (y − q(x)), and taking
the remainder of P is a F-linear operation. Hence, the function f : S → F

which is an evaluation of Q on a subset S of F×F is given by an F-linear trans-
formation applied to p. This implies that f : S∪ T → F is also F-linear in p.
So, arguing inductively, the PCPP for an RS-codeword p is F-linear in p and
so it is also F2-linear in p. We assume p is itself obtained by a F2-linear trans-
formation applied to w (by arguing along the lines of [Ben-Sasson et al. 2006,
Proposition 8.14], details omitted). We conclude that the PCPP resulting from
Ben-Sasson and Sudan [2008] is F2-linear in w.

We move on to the construction in Dinur [2007] and follow the proof of Dinur
[2007, Theorem 9.1], using the notation given there. We assume we have at
hand a proof of length m · polylog n obtained by applying a linear transforma-
tion to w ∈ P. This proof is viewed as a mapping σ : V → F2 where V is the set
of vertices of a constraint graph G. The first step in the proof of Dinur [2007,
Theorem 9.1] is to construct σ1 : VH → F2 where VH replaces each vertex v ∈ V
by a “cloud” of vertices, denoted [v], and σ1 assigns the value σ (v) to all vertices
in [v]. Clearly, σ1 is F2-linear in σ as it is obtained from σ by repetition. Next,
an assignment σ2 : VH → F

dt/2

2 is constructed from σ1 by taking σ2(v) to be the
value given by σ1 to all vertices within distance ≤ t/2 from v (d denotes the
degree of the regular graph H). Being a repetition of σ1, this transformation
is also F2-linear. The final step is “alphabet reduction by composition” with an
assignment tester, which is synonymous to a PCPP. In Dinur [2007], the long-
code-based assignment tester is used. However, to maintain F2-linearity, we
compose with the Hadamard based PCPP. In particular, for every v ∈ VH we
replace σ2(v) ∈ F

dt/2

2 with its Hadamard encoding which is an element of F
2dt/2

2 .
Let us call the resulting assignment σ3. Notice σ3 is F2-linear in σ2 because it
is obtained by concatenation with a F2-linear code. We set σ = σ3 and repeat
this process (σ �→ σ1 �→ σ2 �→ σ3) a number of times (see Dinur [2007, Section
8] for details), resulting in an F2-linear transformation that converts w ∈ P
into a proof of length m polylog n. This completes our proof-sketch.
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