
CS369E: Expanders May 16, 2005

Lecture 8: Undirected Connectivity is in logspace

Lecturer: Prahladh Harsha Scribe: Cynthia Dwork & Prahladh Harsha

In the second half of today’s lecture, we will discuss a deterministic logspace algorithm
for undirected connectivity, a recent and beautiful result due to Omer Reingold [Rei]. In
fact, Reingold’s algorithm is one of the reasons this course is being offered this quarter.

8.1 Undirected S-T Connectivity

The undirected s-t connectivity problem is the problem of finding if there exists a path
between two specified vertices in a given undirected graph. More formally, the problem is
as follows:
Input: A undirected graph G = (V,E) and two vertices s, t ∈ V (s denotes source and t
target).
Problem: Are s and t connected? I.e., does there exist a path in G from the source s to
the target t?

USTCONN = {〈G, s, t〉 | G– undirected graph, s, t ∈ V (G); s and t are connected in G} .

Clearly, any of the standard search algorithms (depth-first-search, breadth-first-search
etc.) solve USTCONN in linear time. Thus, the time complexity of USTCONN is well-
understood. What we would be interested in today’s lecture is the same complexity of
USTCONN. It is to be noted that the standard search algorithms perform poorly with
respect to space (this is because their implementation requires a stack or queue which in
the worst case could be as large as the graph). The question we will concern ourselves is
the following: Is USTCONN in Logspace. In other words, does there exist a deterministic
logspace algorithm that can decide connectivity in an undirected graph. Reingold resolved
this question positively and gave a logspace algorithm for USTCONN using the zig-zag
product. Before that, we will briefly look at the history of USTCONN.

8.1.1 History of Space Complexity of USTCONN

USTCONN is in NL. In fact, the directed counterpart of USTCONNis the complete problem
for non-deterministic logspace. In 1970, Savitch demonstrated [Sav] a simulation of a non-
deterministic space S machine by a deterministic space S2 machine. Thus, USTCONN ∈
SPACE(log2 n). In one of the initial lectures of this course on random walks (Lecture 3),
we saw a randomized logspace algorithm for USTCONN due to Aleliunas et. al. [AKLLR].
Thus, USTCONN ∈ RL (RL denotes randomized logspace). Saks and Zhou, in 1995, then
showed that any randomized space S machine can be simulated by a deterministic space S3/2

machine [SZ]. Putting both these results together, we have USTCONN ∈ SPACE(log3/2 n).
Later, in 1997, Armoni, Ta-Shma, Wigderson and Zhou improved this deterministic simu-
lation to give a O(log4/3 n)-space algorithm for USTCONN. The status of this problem has
been open since then till it was resolved recently due to Reingold. Note that log n space is
required to even index a vertex in the graph.

8-1



8.2 Savitch’s Deterministic Simulation

To begin with, we will look at Savitch’s algorithm for USTCONN. The main idea in Savitch’s
algorithm is that squaring improves connectivity. More formally, for any graph G, define
Gsq to be the graph on the same set of vertices as G, but has an edge between any two
vertices u, v in V (G) if there exists a path of length at most two between u and v in the
original graph G. Note this is not the same as the more natural G2 which corresponds
to the graph where there are as many edges between u and v as the number of walks of
length exactly two between u and v in G. A simple observation reveals that if u and v are
connected in G, then (u, v) is an edge in Gsqlog n

. Savitch gave a O(log2 n) algorithm that
computes the graph Gsqlog n

from G, thus proving USTCONN ∈ SPACE(log2 n).
We will now perform Savitch’s algorithm with the more natural G2 instead of Gsq.

Though, this will also solve USTCONN, this will not give us another proof of Savitch’s
Theorem. In fact, the space complexity of computing G2n

is huge. However, this exercise
will be illuminating and will lead us towards Reingold’s algorithm.

For the purpose of this discussion, we will assume all graphs are regular. Before dis-
cussing the algorithm for G2n

, we need to indicate which representation of the graph we use.
For reasons that will become clear later, we will use the rotation map representation intro-
duced while talking about the zig-zag product. If the graph G is d-regular, then the rotation
map RotG is the permutation that maps (u, i) ∈ V ×[d] to (v, j) ∈ V ×[d] if the ith edge from
u leads to v and the label of this edge with respect to v is j. Note, RotG(RotG(u, i)) = (u, i)
for all (u, i). We can compute this representation from the adjacency matrix and list in
O(log n) space.

Let us first calculate the space-complexity of computing the rotation map of H2 given
the rotation map of H. Let H be a d-regular graph, then H2 is a d2 regular graph. The edge
labels of H2 can be assumed to be from the set [d]×[d]. How do we compute RotH2(u, (i1, i2))
efficiently in space? To start with we assume that the tape contains (u, (i1, i2)) and at the
end of the computation, we would like this to be replaced by RotH2(u, (i1, i2)). For a
graph G, let SPACE(G) denote the additional space required to replace the input (u, i)
on the tape with RotG(u, i). We first compute RotH(u, i1) = (w, j2) and replace the tape
contents (u, (i1, i2)) with (w, (j2, i2)). This requires an additional space for computing
RotH , i.e., SPACE(H). In the second step, we then reuse this extra space to compute
RotH(w, i2) = (v, j1) and replace the tape contents (w, (j2, i2)) with (v, (j2, j1)). Finally, we
swap the indices j1 and j2 in the tape to obtain (v, (j1, j2)) which is in fact RotH2(u, (i1, i2)).
A analysis of the above shows that

SPACE(H2) = SPACE(H) + O(log deg(H)).

Performing the above procedure O(log n) times, we can compute the rotation map of
Gn = G2log n

, thus solving USTCONN. The space complexity of this algorithm is given by

8-2



the following:

SPACE(Gn) = SPACE(G2log n
)

= SPACE(G2log n−1
) + O(log deg(G2log n−1

))
...

= SPACE(G) + O(log deg G) + O(log deg G2) + · · ·+ O(log deg G2log n−1
)

=
log n−1∑

i=1

O(log deg G2i
)

The reason this is a bad algorithm for solving USTCONN is because the degree of G2i

grows prohibitively large with i, in fact deg(G2i
) = (deg(G))2

i
. If somehow we could keep

the degree constant through out the process, then in fact the above procedure would give
a O(log n) space algorithm for USTCONN. But this is not possible, squaring a graph will
also square the degree. Is it possible to obtain the same effect as squaring without actually
increasing the degree of the graph? The main advantage of squaring is that it improves
the expansion of the graph (and thus the connectivity of the graph). The crucial idea
in Reingold’s algorithm is that the zig-zag product (discussed in the first half of today’s
lecture) can be used to decrease the degree without altering the expansion of the graph by
too much. Reingold’s algorithm thus alternates between squaring and zig-zag to improve
the expansion of the graph (via squaring) while not increasing the degree.

8.3 Zig-Zag Product

We say that a graph G is a (N, d, λ)-graph if G is a d-regular graph on N vertices and
the spectral expansion of G is at most λ. Let us quickly recall the definition of the zig-zag
product.

Definition 8.1 The zig-zag product between rotation map representations of two graphs
G, a (N,D1, λ1)-graph and H, a (D1, D2, λ2)-graph, is a rotation map representation of a
graph, denoted by G z©H. The graph G z©H and its rotation map are defined as below.

1. G z©H has ND1 vertices.

2. G z©H is a D2
2-regular graph.

3. RotG z©H((u, i), (a1, a2)) = ((v, j), (b1, b2)) if the following is satisfied: There exist
i′, j′ ∈ [D2] such that

• RotH(i, a1) = (i′, b2)

• RotG(u, i′) = (v, j′)

• RotH(j′, a2) = (j, b1)

We proved the following result in the earlier lecture on zig-zag products.

8-3



Theorem 8.2 Suppose G is an (N1, d1, λ1)-expander and H is a (d1, d2, λ2)-expander.
Then G z©H is an (N1d1, d

2
2, f(λ1, λ2))-expander, where f(λ1, λ2) ≤ λ1 + λ2 + λ2

2.

Note that the above result is useful only when both the graphs G and H have fairly
good expansion to start with. For our case, all we know is that the original graph, if
connected and non-bipartite, has spectral expansion bounded away from 1 by at least a
inverse polynomial. In fact, we proved the following result in Lecture 3.

Lemma 8.3 If G is a connected, d-regular, non-bipartite graph on n vertices, then

1− λ ≥ 1
dn2

.

The zig-zag product is useful even in this case as long as the other graph H has good
spectral expansion. We will use the following result (which we will not prove in class) on
zig-zag products for this purpose.

Lemma 8.4 If λ(H) ≤ 1/2, then

1− λ(G z©H) ≤ 1
3

(1− λ(G)) .

We mention that the zig-zag product is not the only graph product that satisfies such
properties. The replacement product would have sufficed for our purposes (see [MR1,
MR2]). However, we use the zig-zag product since we are already familiar with it from the
previous lecture. A proof of Lemma 8.4 can be found in [RVW] while a proof of a similar
statement for the replacement product can be found in Martin and Randall [MR2].

8.4 Reingold’s Algorithm

As mentioned in the previous sections, the main idea in Reingold’s algorithm is to alternate
squaring with zig-zag product (with a constant sized expander). Lemma 8.4 tells us the
following: as long as H is a good expander (i.e., λ(H) ≤ 1/2), zig-zagging G with H only
reduces the spectral gap (i.e., 1 − λ) by a factor of three (3). This is good for us, since
squaring improves the spectral gap 1− λ from to 1− λ2 while zig-zag product deteriorates
the spectral gap from 1−λ to 1−λ/3. Thus, we could alternate a couple of squarings with
a zig-zag product to reduce the spectral gap by a factor of two while keeping the degree
constant.

We are now ready to describe Reingold’s algorithm.
let H be a (d16, d, 1/2)-graph for some constant G. Such a graph H can be found either

by exhaustive search or by using one of the expander constructions (described earlier in
the course). For this section, we will assume that the input graph G for which we need to
check (s, t) connectivity is a d16-regular non-bipartite graph. We will later remove these
restrictions on G.

Furthermore, we will assume G is a connected graph. Actually, this is a stupid assump-
tion since if G were indeed connected, then there is nothing to prove. What we actually
mean is the following: Reingold’s algorithm works independently for each connected com-
ponent of the graph and checks if t exists in the connected component that contains s. Since
every component of G is d16-regular, connected and non-bipartite, we have from Lemma 8.3
that 1− λ(C) ≥ 1/d16n2, for all components C of G.

8-4



Checking connectivity on an expander We first argue that checking connectivity on
a graph, each of whose connected components is an expander (i.e., λ ≤ 1/2) can be done
in logspace. This follows from the simple observation that in an expander, the distance
between any two vertices in O(log n). Thus, it suffices to enumerate all O(log n) paths in
the graph originating at s and check if any of them lead to t. This can be done in logspace.
Thus, it suffices for us to convert G into another G′ in logspace such that each connected
component of G′ is an expander (i.e., λ ≤ 1/2) and furthermore, two vertices are connected
in G iff they are connected in G′ (i.e., the transformation does not alter the connectivity of
the graph).

Reingold’s Algorithm

Input: G – d16-regular graph and two vertices s, t ∈ V (G).

1. Set l to be the smallest integer such that
(
1− 1

d16n2

)2l

≤ 1
2 .

Comment: l is O(log n)
2. Set G0 ← G.
3. For i = 1, . . . , l do, set Gi ← (Gi−1 z©H)8.

Comment: (1) Each Gi is a d16-regular graph.
(2) Each connected component of Gl is an expander with spectral expansion
at most 1/2 (see Theorem 8.6)

4. Check if s and t are connected in Gl by enumerating over all O(log n) paths
originating at s.

We first prove the comment in Step 3, which will suffice to prove the correctness of
Reingold’s algorithm. For this we need the following proposition.

Proposition 8.5 For i = 1, . . . , l, λ(Gi) ≤ min{λ2(Gi−1), 1/2}.

Proof: Since Gi = (G z©H)8, we have from Lemma 8.4 that λ(Gi) = λ8(Gi−1 z©H) ≤
[1− (1− λ(Gi−1))/3]8. Now, consider the following two cases.

Case (i): λ(Gi−1) ≤ 1/2. Then,

λ(Gi) = (λ(Gi−1 z©H))8 ≤
(

1− 1
3
· 1
2

)8

=
(

5
6

)8

<
1
2
.

Case (ii): λ(Gi−1) > 1/2. In this case, we can by expansion check that(
1− 1

3
(1− x))

)4

≤ x, for all
1
2
≤ x ≤ 1

Hence,

λ(Gi) = (λ(Gi−1 z©H))8 ≤
(

1− 1
3

(1− λ(Gi−1))
)8

≤ λ2(Gi−1).

By our choice of l, we have the following theorem on the expansion of each connected
component of Gl.

Theorem 8.6 The spectral expansion of each connected component of Gl is at most 1/2.

8-5



Space Complexity of Reingold’s Algorithm We noted before that each squaring op-
eration requires an additional space of O(log deg G). Similarly, it can be shown that each zig-
zag product with H (of constant size) also requires additional space at most O(log deg G).
Since there are at most O(log n) squaring and zig-zag products (since l = O(log n)) and
the degree of all the graphs is at most d16, a constant, the total space complexity of the
algorithm is at most O(log n).

Handling non-regular bipartite graph To start with, we will convert the graph into
a 3-regular graph by replacing each vertex of degree d greater than 3 by a cycle of size d
and connecting each of the d neighbors of the vertex to the d distinct points on the circle.
To convert the graph into a d16-regular graph, we then add d16−3 self loops to each vertex.
Note, the addition of self loops also makes the graph non-bipartite. Both these conversions
can be effected in log space.

References

[AKLLR] Romas Aleliunas, Richard M. Karp, Richard J. Lipton, László Lovász, Charles
Rackoff: “Random Walks, Universal Traversal Sequences, and the Complexity of
Maze Problems”. FOCS 1979: 218–223

[ATWZ] Roy Armoni, Amnon Ta-Shma, Avi Wigderson, Shiyu Zhou: “An O
(
log4/3 n

)
space algorithm for (s, t) connectivity in undirected graphs”. J. ACM 47(2): 294–
311 (2000).

[MR1] Neal Madras, Dana Randall: “Factoring Graphs to Bound Mixing Rates”. FOCS
1996: 194–203

[MR2] Russell A. Martin, Dana Randall: “Sampling Adsorbing Staircase Walks Using
a New Markov Chain Decomposition Method”. FOCS 2000: 492–502

[Rei] Omer Reingold: “Undirected ST-connectivity in log-space”. STOC 2005: 376–
385 (See also ECCC Tech Report TR04–094, 2004).

[RVW] Omer Reingold, Salil Vadhan, and Avi Wigderson: “Entropy Waves, The Zig-Zag
Graph Product, and New Constant-Degree Expanders and Extractors”, Annals
of Math 155: 157–187, 2002.

[SZ] Michael E. Saks, Shiyu Zhou: “BPHSpace(S) ⊆ DSPACE(S3/2)”. J. Comput.
Syst. Sci. 58(2): 376–403 (1999)

[Sav] Walter J. Savitch: “Relationships Between Nondeterministic and Deterministic
Tape Complexities”. J. Comput. Syst. Sci. 4(2): 177–192 (1970).

8-6


	Undirected S-T Connectivity
	History of Space Complexity of USTCONN

	Savitch's Deterministic Simulation
	Zig-Zag Product
	Reingold's Algorithm

