
CMSC 39600: PCPs, codes and inapproximability 27 Sep, 2007

Lecture 2: PCPs – definitions and inapproximability of clique
Lecturer: Prahladh Harsha Scribe: Karthik Sridharan

In today’s lecture, we will formally define the PCP classes, state the PCP Theorem, its various
strenghtenings and finally prove the NP-hardness of approximating the clique.

2.1 PCP Classes – Definition

We first define a restricted (probabilistic) verifier which on input a statement x, probes a proof at
a few randomly selected positions and then accepts or rejects the proof. Based on this verifier we
shall then define the PCP class.

Definition 2.1 (restricted verifier). Let r, q,m, t : N → N be integer valued functions and Σ an
alphabet. A (r, q,m, t)Σ-restricted verifier V is a probabilistic Turing Machine (TM) with oracle
access to a proof π over the alphabet Σ, which on input x of length n.

• tosses at most r(n) coins

• probes at most q(n) locations of

• a proof π of size at most m(n)

• runs in time t(n)

• and based on the proof bits it reads, it either accepts or rejects the proof.

We will denote the verdict of the verifier V on input x and proof π and random coins R by V π[x;R].

Definition 2.2 (PCP Classes). Let r, q,m, t : N→ N be integer valued functions and Σ an alphabet.
We say that a language L ∈ PCPΣ

c,s[r, q,m, t] if L has a (r, q,m, t)Σ-restricted verifier V such that

Completeness: ∀x ∈ L,∃π of size at most m(|x|),PrR [V π[x;R] = acc] ≥ c(n).

Soundness: ∀x /∈ L,∀π of size at most m(|x|) PrR[V π[x;R] = acc] ≤ s(n).

If the alphabet is the binary alphabet {0, 1}, we will usually omit it. Similarly, we will omit
mentioning the running time t(n) if t(n) = Ω(poly(n)) and the proof length m(n) of the proof if
m(n) = Ω(2r(n)+q(n)).
Remark

• If c(n) = 1, we say that the PCP verifier has perfect completeness.

• The verifier could be either non-adaptive or adaptive (i.e., the locations probed by the verifier
could depend on the earlier probes). To explicitly specify that a particular PCP class is
obtained by an adaptive (non-adaptive verifier), we will use the notation a-PCP (na-PCP).

• If the verifier is non-adaptive then the size of the proof is bounded above by q(n)2r(n) while if
the verifier is adaptive, then m(n) ≤ 2r(n)+q(n).

• The number of queries is bounded by the running time (i.e., q(n) ≤ t(n)), which could be as
large as polynomial in the length of the input.

2-1

• PCPc,s[r, q] ⊆ NTIME(2r(n)+q(n)): The non-deterministic verifier guesses the proof of length
2r+q and runs the PCP verifier for all possible random coins and accepts if the accepting
probability is at least c(n).

• It follows from definition that NP = PCP1,0[0,poly(n)], BPP = PCP 2
3 ,

1
3
[poly(n), 0], P =

PCP1,0[0, 0].

2.2 PCP Theorems

The PCP Theorem can now be stated using th above notation as follows:

Theorem 2.3 (PCP Theorem [AS98, ALM+98]).

∃q > 0 : NP =
⋃
c>0

PCP1, 12
[c log n, q]

Note here that the inclusion PCP1, 12
[log n, q] ⊆ NP follows from the above remark that

PCP [r, q] ⊆ NTIME(2r+q). The PCP Theorem proves the inclusion in the opposite direction.

2.2.1 A (Brief) History of PCP Theorem

The study of probabilistic checking of proof was initiated in the independent works of Babai and
Moran [BM88]; and Goldwasser, Micali and Rackoff [GMR89]. Following a sequence of results,
Babai, Fortnow and Lund [BFL91] and Fortnow, Rompel and Sipser [FRS94] proved the following
exponential version of the PCP Theorem:

NEXP = PCP1, 12
[poly(n),poly(n)].

Feige, Goldwasser, Lovász, Safra and Szegedy [FGL+96] and independently Babai, Fortnow, Levin
and Szegedy [BFLS91] scaled down the above result for non-deterministic exponential time to non-
deterministic polynomial time with different motivations. Babai et al. [BFLS91], showed that any
proof can be efficiently (re)written in such a manner that the rewritten proof can be checked with
at most poly log n probes.

NP ⊆ PCP1, 12
[r(n) = poly log(n), q(n) = poly log(n),m(n) = poly(n), t(n) = poly log(n)].

Feige et al. [FGL+96] proved the following:

NP ⊆ PCP1, 12
[log n log log n, log n log log n]

and established the dramatic connection between PCPs and hardness of approximation. We will
discuss this reduction of [FGL+96] showing the hardness of approximating clique later in today’s
lecture. Subsequently, Arora and Safra [AS98] showed that NP = PCP1, 12

[log(n),
√

log(n)] and
immediately after, Arora, Lund, Motwani, Sudan and Szegedy [ALM+98], showed that the number
of queries can be brought down to a constant, giving the PCP Theorem.

In this course, we will not follow the above sequence of results to prove the PCP Theorem. We
will instead give the recent proof of the PCP Theorem due to Dinur [Din07].

2-2

2.2.2 Strengthenings of the PCP Theorem

We shall see various strengthening of the PCP Theorem in this course. The first strengthening,
called the parallel repetition theorem, by Raz, shows that the error probability can be brought down
arbitrarily if we allow the alphabet to grow polynomially in the inverse of the error.

Theorem 2.4 (Parallel Repetition Theorem [Raz98]). For any ε > 0, there exists alphabet Σ such
that |Σ| = poly(1

ε) and
NP ⊆

⋃
c>0

PCPΣ
1,ε[c log n, 2]

Using the parallel repetition theorem, H̊astad then showed that the constant q in the PCP
Theorem can be brought down to 3.

Theorem 2.5 ([H̊as01]). For any ε > 0,

NP ⊆
⋃
c>0

PCP1−ε, 12 +ε[c log n, 3]

Furthermore, the actions of the above PCP verifier operation is very simple: It merely queries the
proof in three locations (i1, i2, i3) based on its random coins and accepts iff πi1 ⊕ πi2 ⊕ πi3 = b.

The following optimal inapproximability result for MAX-3SAT follows from the above H̊astad’s
Theorem. Note that for a random assignment satisfies 7/8 fraction of the clauses. Thus, a trivial
randomized algorithm achieves 7/8-approximation for MAX-3SAT (this algorithm can be deran-
domized). The following corollary states that to do any better, would imply NP=P!

Corollary 2.6. ∀ε > 0, it is NP-Hard to approximate MAX-3SAT to within 7
8 + ε

Note that the above 3-query PCP does not have perfect completeness. In fact, it is known that
any non-adaptive 3-query PCP for NP with perfect completeness cannot achieve soundness better
than 5/8 unless NP=P. Later, Guruswami, Lewin, Sudan, and Trevisan [GLST98] constructed an
adaptive 3-query PCP for NP with perfect completeness and soundness arbitrarily close to 1/2.

Theorem 2.7 ([GLST98]). For any ε > 0,

NP ⊆
⋃
c>0

a-PCP1, 12 +ε[c log n, 3]

The above strengthenings of the PCP Theorem though obtain optimal results with respect to
query complexity and soundness behave very badly with respect to proof size. In fact, it is reputed
that the proof size m(n) in H̊astad’s Theorem is of the order of n106

, a polynomial, albeit a large one.
There has been progress in the orthogonal direction of shortening the proof size starting from the
work of Babai et al [BFLS91], resulting in the following PCP due to Ben-Sasson and Sudan [BS05]
and Dinur [Din07]

Theorem 2.8 ([BS05, Din07]).

NP ⊆
⋃
c>0

PCP1, 12
[r(n) = log n, q(n) = 3,m(n) = npoly log n]

2.3 Hardness of Approximating Clique

We will now assume the PCP Theorem and prove the NP-hardness of approximating the MAX-
CLIQUE problem. For this, we first recall the approximate decision problem gap-CLIQUEα, defined
in the first lecture.

2-3

Definition 2.9 (gap-CLIQUE). The instance of gap-CLIQUEα (for each 0 < α ≤ 1)are of the form
〈G, k〉, where G is a graph and k a positive integer. The YES and NO instances of gap-CLIQUEα
are define

Y ES = {〈G, k〉|CLIQUE(G) ≥ k}
NO = {〈G, k〉|CLIQUE(G) ≤ αk}

where CLIQUE(G) denotes the size of the largest clique in G.

We will prove the following reduction (due to Feige et al. [FGL+96]) which will prove the NP-
hardness of gap-CLIQUEα for some 0 < α < 1, which in turns proves the NP-hardness of approxi-
mating MAX-CLIQUE to a factor better than α.

Lemma 2.10 ([FGL+96]). If 3-COLOR ∈ PCPc,s[r, q] then there exists a deterministic reduction
running in time poly(2r+q) reducing 3-COLOR to gap-CLIQUEs/c.

Proof. Consider a PCP verifier Ver for 3-COLOR that shows 3-COLOR ∈ PCPc,s[r, q]. We use this
verifier to reduce an instance H of 3-COLOR to an instance 〈G, k〉 of gap-CLIQUEs/c. The basic
idea is to encode the actions of the PCP verifier Ver by the graph G such that if H ∈ 3-COLOR
then G has a clique of size at least k and if H /∈ 3-COLOR then G does not have any clique of size
greater than (s/c)k for some k.

What are the actions of the PCP Verifier Ver? On input the graph H, it tosses random coins
R (uniformly at random of 2r possibilities). Based on these random coins R, the verifier decides to
probe the proof at q locations (i1(R), . . . , iq(R)). It then probes the proof π at these locations to
obtain (πi1(R), πi2(R), . . . , πiq(R)). We call this sequence of q bits, the ”view” of the verifier. Note
that there are exactly 2q possible views for each random coin (depending on the proof). Some of
these views are accepting (i.e., they cause the verifier to accept) while others are rejecting. For a
given proof π and random coins R, we denote the corresponding view of the proof by Q(R, π) =
(πi1(R), πi2(R), . . . , πiq(R)).1

We are now ready to give the description of the graph G = (V,E). The graph G will have
|V | = 2r+q vertices, distributed over 2r layers, each layer consisting of 2q vertices. The 2r layers
correspond to the 2r different random coins, while the 2q vertices within each layer correspond to
the possible 2q views. Thus,

V (G) = {(R, view)|R ∈ {0, 1}r, view ∈ {0, 1}q}.

Two vertices (R, view) and (R′, view′) are connected by an edge if both the views are accepting and
furthermore they do not contradict each other. In other words, there exists a proof π such that (i)
view = Q(R, π), (ii) view′ = Q(R′, π) and (iii) Verπ[H;R] = Verπ[H;R′] = acc. This completes the
description of the graph G = (V,E).

We now discuss the size of the largest clique in the two cases, depending on whether H ∈
3-COLOR or H /∈ 3-COLOR.

Completeness: If H ∈ 3-COLOR, then there exists a proof π such that PrR[Verπ[H;R] = acc] ≥ c.
Consider the following set of vertices.

Cπ = {(R,Q(R, π))|VerR[H;R] = acc}.

Clearly the vertices given by Cπ form a clique since they correspond the accepting views from
the same proof π. We have, |Cπ| ≥ c 2r. Thus, in this case, we have CLIQUE(G) ≥ c2r.

1The above description assumes the verifier is non-adaptive. We could do a similar argument if the verifier
were adaptive. The views in this case as in the non-adaptive case are a sequence of q bits in the proof. But the
positions in the proof these views correspond to, will be different. For instance, in this case Q(R, π) is defined as
Q(R, π) = (πi1(R), πi2(R,πi1(R))

, πi3(R,πi1(R))
, πi2(R,πi1(R))

, . . . ,). However, for simplicity we will assume the verifier

is non-adaptive.

2-4

Soundness: if H /∈ 3-COLOR, then for all proofs π, PrR[VerR[H;R] = acc] ≤ s. In this case,
we will show that CLIQUE(G) ≤ s2r. Suppose otherwise, then there exists a set of C
vertices in G of size s2r that form a clique. Since edge exist only between non-contradicting
accepting views, there exists a proof π such that for all (R, view) ∈ C, we have view = Q(R, π)
and Verπ[H;R] = acc. But then, we have PrR[Verπ[H;R] = acc] ≥ s, contradicting that
H /∈ 3-COLOR.

Hence, the reduction H 7→ 〈G, c2r〉 is a reduction from 3-COLOR to gap-CLIQUEs/c. Furthermore,
this reduction can be performed in time at most linear in the size of the graph G (i.e., 2r+q). This
completes the proof of the lemma

2.3.1 Improving the inapproximability factor

We observe that the inapproximability factor in the above reduction only depends on the ratio s/c.
However, by a simple sequential repetition of the verifier improves this factor to any constant α > 0
as shown in the following proposition.

Proposition 2.11. For all k > 0, PCPc,s[r, q] ⊆ PCPck,sk [kr, kq]

Proof. Sequentially repeat the actions of the verifier of ”PCPc,s[r, q]” k-times and accept only if all
the k views are accepting.

Combining this proposition with any constant k with the reduction, we have the improved hard-
ness result.

Corollary 2.12. ∀α > 0, gap-CLIQUEα is NP-hard.

We can improve the hardness factor further by choosing k to be super-constant. However, then
the number of random coins tossed by the verifier kr = O(k log n) becomes super logarithmic and
hence the running time of the reduction 2kr+kq becomes super-polynomial. The problem here is
that we are using kr random coins to repeat the verifier k times. We can instead use techniques
from derandomization to recycle random coins. In fact, it is known that r + O(k) (as opposed to
kr) random coins suffice to repeat a randomized protocol k times achieving the same exponential
improvement in error (see exercise 1 for more details).

Lemma 2.13. For all k, PCP1,s[r, q] ⊆ PCP1,2sk [r +O(k), kq].

Combining this with the hardness result, we get

Corollary 2.14. There exists a δ > 0, gap-CLIQUEn−δ in NP-hard. In other words, approximating
MAX-CLIQUE to a factor better than n−δ is NP-hard.

It is known that we can ”recycle queries” and improve the inapproximability factor to n−(1−ε) for
any ε (albeit under randomized reductions) [H̊as99]. We will not cover these results in this course.
Note this is almost optimal, since outputting a single vertex gives a 1/n approximation algorithm
for MAX-CLIQUE.

References

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and
Mario Szegedy. Proof verification and the hardness of approximation problems.
J. ACM, 45(3):501–555, May 1998. (Preliminary Version in 33rd FOCS, 1992).
doi:10.1145/278298.278306.

2-5

http://dx.doi.org/10.1145/278298.278306

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new charac-
terization of NP. J. ACM, 45(1):70–122, January 1998. (Preliminary Version in 33rd
FOCS, 1992). doi:10.1145/273865.273901.

[BFL91] László Babai, Lance Fortnow, and Carsten Lund. Non-deterministic exponential
time has two-prover interactive protocols. Computational Complexity, 1(1):3–40, 1991.
(Preliminary Version in 31st FOCS, 1990). doi:10.1007/BF01200056.

[BFLS91] László Babai, Lance Fortnow, Leonid A. Levin, and Mario Szegedy. Check-
ing computations in polylogarithmic time. In Proc. 23rd ACM Symp. on The-
ory of Computing (STOC), pages 21–31. New Orleans, Louisiana, 6–8 May 1991.
doi:10.1145/103418.103428.

[BM88] László Babai and Shlomo Moran. Arthur-merlin games: A randomized proof system,
and a hierarchy of complexity classes. J. Computer and System Sciences, 36(2):254–276,
April 1988. doi:10.1016/0022-0000(88)90028-1.

[BS05] Eli Ben-Sasson and Madhu Sudan. Simple PCPs with poly-log rate and query com-
plexity. In Proc. 37th ACM Symp. on Theory of Computing (STOC), pages 266–275.
Baltimore, Maryland, 21–24 May 2005. doi:10.1145/1060590.1060631.

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007. (Prelimi-
nary Version in 38th STOC, 2006). doi:10.1145/1236457.1236459.

[FGL+96] Uriel Feige, Shafi Goldwasser, László Lovász, Shmuel Safra, and Mario
Szegedy. Interactive proofs and the hardness of approximating cliques. J.
ACM, 43(2):268–292, March 1996. (Preliminary version in 32nd FOCS, 1991).
doi:10.1145/226643.226652.

[FRS94] Lance Fortnow, John Rompel, and Michael Sipser. On the power of multi-
prover interactive protocols. Theoretical Comp. Science, 134(2):545–557, 21 Novem-
ber 1994. (Preliminary Version in 3rd IEEE Symp. on Structural Complexity, 1988).
doi:10.1016/0304-3975(94)90251-8.

[GLST98] Venkatesan Guruswami, Daniel Lewin, Madhu Sudan, and Luca Trevisan. A
tight characterization of NP with 3-query PCPs. In Proc. 39th IEEE Symp. on Foun-
dations of Comp. Science (FOCS), pages 18–27. Palo Alto, California, 8–11 November
1998. doi:10.1109/SFCS.1998.743424.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge com-
plexity of interactive proof systems. SIAM J. Computing, 18(1):186–208, February 1989.
(Preliminary Version in 17th STOC, 1985). doi:10.1137/0218012.

[H̊as99] Johan Håstad. Clique is hard to approximate within n1−ε. Acta Mathematica,
182(1):105–142, 1999. (Preliminary Version in 28th STOC, 1996 and 37th FOCS, 1997).
doi:10.1007/BF02392825.

[H̊as01] ———. Some optimal inapproximability results. J. ACM, 48(4):798–859, July 2001.
(Preliminary Version in 29th STOC, 1997). doi:10.1145/502090.502098.

[Raz98] Ran Raz. A parallel repetition theorem. SIAM J. Computing, 27(3):763–803, June 1998.
(Preliminary Version in 27th STOC, 1995). doi:10.1137/S0097539795280895.

2-6

http://dx.doi.org/10.1145/273865.273901
http://dx.doi.org/10.1007/BF01200056
http://dx.doi.org/10.1145/103418.103428
http://dx.doi.org/10.1016/0022-0000(88)90028-1
http://dx.doi.org/10.1145/1060590.1060631
http://dx.doi.org/10.1145/1236457.1236459
http://dx.doi.org/10.1145/226643.226652
http://dx.doi.org/10.1016/0304-3975(94)90251-8
http://dx.doi.org/10.1109/SFCS.1998.743424
http://dx.doi.org/10.1137/0218012
http://dx.doi.org/10.1007/BF02392825
http://dx.doi.org/10.1145/502090.502098
http://dx.doi.org/10.1137/S0097539795280895

	PCP Classes -- Definition
	PCP Theorems
	A (Brief) History of PCP Theorem
	Strengthenings of the PCP Theorem

	Hardness of Approximating Clique
	Improving the inapproximability factor

