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Lecture 4: NP ⊆ PCP [poly, O(1)]

Lecturer: Prahladh Harsha Scribe: Andrew Cotter

In today’s lecture, we will construct exponential sized PCPs for NP. More formally, we
will show that the NP-Complete problem, Circuit-Satisfiability (Circuit-SAT) is in PCP1,1−δ[O(n2), O(1)]
for some 0 < δ < 1. Recall that the PCP Theorem states that Circuit-SAT ∈ PCP1,1−δ[O(log n), O(1)].
However, as we will see in later lectures, the exponential sized PCPs for Circuit-SAT will be
used in proving the PCP Theorem. Actually, we will prove a slightly stronger result than
Circuit-SAT ∈ PCP1,1−δ[O(log n), O(1)]. We will actually construct a PCP of Proximity for
a related problem, Circuit-Value (Circuit-VAL).

4.1 Walsh-Hadamard code (recap from last lecture)

Let us first recall the local testability and decodability of the Wlash-Hadamard code, dis-
cussed in the last lecture.

Definition 4.1 (Linearity test). The BLR-Test to test linearity of a function f : {0, 1}k →
{0, 1} is as follows:

BLR-Testf : “ 1. Choose y, z ∈R {0, 1}k

2. Accept if f(y) + f(z) = f(y + z). ′′

Completeness: If f is linear, then Pr
[
BLR-Testf accepts

]
= 1.

Soundness: If f is δ-far from linear, then Pr
[
BLR-Testf rejects

]
≥ δ.

Definition 4.2 (Local decodability). For any function f : {0, 1}k → {0, 1}, that is sup-
posedly closed to some linear function lz = 〈z, ·〉, the (probabilistic) local decoder Decf :
{0, 1}k → {0, 1} is defined as follows:

Decf : “On input x,

1. Choose r ∈R {0, 1}k

2. Output f(x+ r)− f(r) ′′

Proposition 4.3 (Correctness of Walsh-Hadamard decoder). If f is δ-close to the Walsh-
Hadamard code lz for some z ∈ {0, 1}k, then

Pr
[
Decf (x) = lz(x) = 〈z, x〉

]
≥ 1− 2δ.
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4.2 Circuit-satisfiability is in PCP [poly, O(1)]

4.2.1 Circuit-SAT – Description

The NP-complete problem, Circuit-Satisfiability (Circuit-SAT) is specified as follows: Given
a Boolean circuit C with n total gates labeled 1, 2, . . . , n and k ≤ n input gates (the first k
gates are assumed to be input gates), is there an assignment w ∈ {0, 1}k such that C(w) = 1.
We may assume wlog that the gates of C are one of the following: AND (fan-in 2), NOT,
INPUT and OUTPUT (all fan-in 1).

For each gate i (with inputs j, k), we can express the gate constraints as a quadratic
function as follows:

Pi(z) =



zi − zjzk if the i-th gate is an AND gate with inputs from
gates j and k.

zi − (1− zj) if the i-th gate is a NOT gate with input from
gate j.

1− zj if the i-th gate is an output gate with input from
gate j.

0 if the i-th gate is an input gate (i.e. i ≤ m).

Recall the problem of Circuit-SAT: is there an assignment w to the k input gates such
that C is satisfied? Or equivalently, is there an assignment z to all of the gates such that
∀i, Pi (z) = 0?

We will now construct a PCP Verifier to check that a given assignment z ∈ {0, 1}n
satisfies all the quadratic constraints Pi. To build some intuition, suppose that all the
functions Pis are in fact linear. Then, if we want to check that ∀iPi (z) = 0, we could let
the proof be the Walsh-Hadamard code lz for z. Recall that this code is the evaluation of
all linear functions at z. Hence, we may verify using the following procedure:

1. Choose α1, α2, . . . , αn ∈R {0, 1}

2. Accept if
∑n

i=1 αiPi (z) = 0

Of course, we could not do this exactly, as the prover might not give a Walsh-Hadamard
code. But then we could check that it is close to a linear function and perform local-
decoding. However, we will ignore this issue for now and assume that the proof is exactly
the Walsh-Hadamard code of z. Then, clearly we will accept if the circuit is satisfied by
the assignment z. Otherwise, we will reject with probability 1

2 .
Unfortunately, we cannot do this as the functions Pi’s are not linear, but quadratic

functions. We will do essentially the same as above, except that since our functions are
quadratic, we must also include the quadratic equivalent of the Walsh-Hadamard code in
our proof (i.e., the evaluation of all quadratic functions at z).

4.2.2 Quadratic Evaluations

Definition 4.4 (quadx). Define quadx : {0, 1}n×n → {0, 1} as:
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quadx (C) =
n∑
i=1

n∑
j=1

ci,jxixj = xTCx

Observe that:

• quadx is the evaluation of every quadratic function at x

• Given the truth table of quadx, a single probe suffices to evaluate any quadratic
function at x

• quadx is linear (in other words, quadx (C1 + C2) = quadx (C1) + quadx (C2))

Suppose we are given f and f ′ which are both linear functions, we first need to check
that there exists a z such that f = lz and f = quadz. We design the following consistency
test for this purpose.

Definition 4.5 (Consistency test). Given both f : {0, 1}n → {0, 1} (maybe = lz) and
f ′ : {0, 1}n×n → {0, 1} (maybe = quadz). The consistency test will do the following:

Quad-Consistencyf,f
′

: “1. Choose z1, z2 ∈R {0, 1}n

2. Accept if f ′
(
z1z

T
2

)
= f (z1) f (z2) ”

where z1zT2 denotes the matrix whose (i, j)th entry is (z1)i · (z2)j (i.e., the z1zT2 is the outer
product of z1 and z2).

This consistency test is based on Freivalds’s matrix multiplication test [Fre79].

Proposition 4.6 (consistency test). The consistency test satisfies the following properties

Completeness: If f = lz and f ′ = quadz for some z ∈ {0, 1}k, then

Pr
[
Quad-Consistencyf,f

′
accepts

]
= 1.

Soundness: If f and f ′ are linear functions, and

Pr
[
Quad-Consistencyf,f

′
accepts

]
>

3
4
,

then there exists z such that f = lz and f ′ = quadz.

Proof. The completeness follows from the following observations. Suppose f = lz and
f ′ = quadz for some z ∈ {0, 1}k. Then, for any y, we have f (y) = yT z. Furthermore,

f ′
(
z1z

T
2

)
=
∑
i,j

zizj
[
z1z

T
2

]
i,j

=
∑
i,j

zizj [z1]i [z2]j

=

(∑
i

zi [z1]i

)
·

∑
j

zj [z2]j


= f (z1) · f (z2)
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Now to prove soundness. Since we know f is linear, we know that f = lz for some z.
Hence, f (z1) · f (z2) = (zT1 z) · (zT z2) = zT1 (zzT )z2. Furthermore, since f ′ is linear, there
exists a matrix B = {bij} such that f ′(z1zT2 ) =

∑
bij(z1)i(z2)j = zT1 Bz2. We will now

compare the matrices B and C = zzT . If B = C, then it must be the case that f ′ = quadz.
Otherwise, we will show that the test rejects with probability at least 1/4, thus proving
soundness.

If B 6= C, then for a random vector z2 ∈ {0, 1}k, we have Bz2 6= Cz2 with probability
at least 1/2, i.e., Prz2 [Bz2 6= Cz2 | B 6= C] ≥ 1/2. Furthermore if y1 6= y2 ∈ {0, 1}k then
for a random z1, we have zt1y1 6= zt1y2 with probability exactly 1/2. Setting y1 = Bz2 and
y2 = Cz2, we have Prz1

[
zT1 Bz2 6= zT1 Cz2 | Bz2 6= Cz2

]
= 1/2. Putting both together we

have Prz1,z2
[
zT1 Bz2 6= zT1 Cz2 | B 6= C

]
≥ 1/4. This completes the proof of soundness

The above consistency test checks that f and f ′ are the lz and quadz respectively given
that f and f ′ are both linear functions. However, we cannot guarantee that f and f ′

are linear functions, all we can guarantee that f and f ′ are close to linear functions using
the linearity test. We then implement the following self-corrected version of the above
quadratic-consistency test.

Definition 4.7 (Quadratic correction test). Given both f : {0, 1}n → {0, 1} (maybe = lz)
and f ′ : {0, 1}n×n → {0, 1} (maybe = quadz). The quadratic correction test is as follows:

Quad-Correctionf,f
′

: “1. Choose z1, z2 ∈R {0, 1}n and M ∈R {0, 1}n×n

2. Accept if f ′
(
z1z

T
2 +M

)
− f ′(M) = f (z1) f (z2) ”

Proposition 4.8 (correction test). The quadratic correction test satisfies the following
properties

Completeness: If f = lz and f ′ = quadz for some z ∈ {0, 1}k, then

Pr
[
Quad-Correctionf,f

′
accepts

]
= 1.

Soundness: If f is δ-close to lz for some z ∈ {0, 1}n and f ′ is δ-close to some linear
function, and

Pr
[
Quad-Correctionf,f

′
accepts

]
>

3
4

+ 4δ,

then in fact f ′ is δ-close to quadz.

Proof. The completeness is obvious. For the soundness, let g be the linear function that
is δ-close to f ′. Since z1, z2, z1zT2 + M and M are uniformly random elements (but not
independent) in their respective domains, we have that with probability at most 4δ, either
f(z1) 6= lz(z1) or f(z2) 6= lz(z2) or f ′(z1zT2 + M) 6= g(z1zT2 + M) or f ′(M) 6= g(M). Since
we have that f(z1) · f(z2) = f ′(z1zT2 + M) − f ′(M) with probability at least 2/4 + 4δ, it
must be the case that lz(z1) · lz(z2) = g(z1zT2 +M)− g(M) with probability at least 3/4. It
now follows from the soundness of Quad-Consistency that g = quadz. Thus, proved.
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4.2.3 PCP verifier

We are now ready to describe the PCP verifier for Circuit-SAT. The PCP Verifier expects as
proof the functions f : {0, 1}n → {0, 1} and f ′ : {0, 1}n×n → {0, 1} which are supposedly lz
and quadz where z is some satisfying assignment to the gates of the circuit C. The actions
of the PCP verifier, which must be evident by now, are summarized below.

Definition 4.9. PCP verifier for Circuit-SAT The proof given to the verifier will consist of
functions f : {0, 1}n → {0, 1} (maybe = lz) and f ′ : {0, 1}n×n → {0, 1} (maybe = quadz).
On input a circuit C and oracle access to these functions, the verifier will perform the
following steps:

1. Linearity test (for both f and f ′)

(a) Choose z1, z2 ∈R {0, 1}n and M1,M2 ∈R {0, 1}n×n

(b) Check that f (z1 + z2) = f (z1) + f (z2) and f ′ (M1 +M2) = f ′ (M1) + f ′ (M2)

2. Quadratic correlation test

(a) Choose z1, z2 ∈R {0, 1}, and M ∈R {0, 1}n×n

(b) Check that f (z1) · f (z2) = f ′
(
z1z

T
2 +M

)
− f ′ (M)

3. Circuit test

(a) Choose α1, α2, . . . , αn ∈R {0, 1}, z′ ∈R {0, 1}n and M ∈R {0, 1}n×n

(b) Decompose the function P (z) =
∑n

i=1 αiPi (z) as the sum of a quadratic part
Q (z) = zTBz, a linear part L (z) = yT z, and a constant c

(c) Check that [f ′ (M +B)− f (M)] + [f (y + z′)− f (z′)] + c = 0

We can now perform a analysis of PCP Verifier as follows:
Query Complexity: The number of queries is 14 = 6 + 4 + 4 (linearity + correlation +
circuit).
Randomness: The number of random coins tossed by the verifier is

(
2n+ 2n2

)
+
(
2n+ n2

)
+(

2n2
)

= 6n+ 4n2 = O(n2).
Proof Length: The length of the proof given to the verifier is 2n + 2n

2
.

Completeness: Clearly, if f = lz, f ′ = quadz where z is a satisfying assignment for C,
then the verifier accepts with probability exactly 1.

Claim 4.10 (Soundness). There exists a δ0 > 0 such that for all δ ≤ δ0, if the PCP Verifier
accepts with probability at least 1 − δ, then there exists a satisfying assignment z for C, f
is δ-close to lz, and f ′ is δ-close to quadz.

Proof. This will be a proof by contradiction. Set δ0 = 1/20. Suppose the claim is false for
this setting of δ0. Then there exists a δ < δ0 = 1/20 such that Pr [ PCP Verifier accepts ] >
1− δ, but there does not exist a satisfying assignment z such that f is δ-close to lz and f ′

is δ-close to quadz. Then, at least one of the following four possibilities must hold.

1. f is δ-far from linear
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2. f ′ is δ-far from linear

3. f is δ-close to some lz, and f ′ is δ-close to some linear g, but g 6= quadz

4. f is δ-close to some lz, f ′ is δ-close to quadz for some z, but z is not a satisfying
assignment for C (equivalently, ∃iPi (z) 6= 0)

We will now show that none of the above cases can happen. In cases 1 and 2, the verifier
rejects with probability at least δ by the soundness of the linearity test. In case 3, the verifier
rejects with probability at least 1/4−4δ by the soundness of the Quad-correction test. In case
4, it must be the case that at least one of the polynomials Pi(z) 6= 0. Hence, with probability
exactly 1/2,

∑
αiPi(z) 6= 0. But with probability at at most 2δ, f ′(M+B)−f ′(M) 6= zTBZ

and similarly withe probability at most 2δ, f(y+z′)−f(y) 6= lz(y). Hence, with probability
at least 1/2 − 4δ, [f ′ (M +B)− f (M)] + [f (y + z′)− f (z′)] + c =

∑
αiPi(z) 6= 0. Thus,

the circuit test rejects with probability at least 1/2− 4δ.
For δ sufficiently small (δ < 1/20), both 1

4 −4δ and 1
2 −4δ are no smaller than δ. Hence,

in each of the cases the verifier rejects with probability at least δ. This is a contradiction.

In essence, we have constructed an exponential sized PCP for Circuit-SAT.

Theorem 4.11. [ALM+98]

Circuit-SAT ∈ PCP1,1− 1
20

[O(n2), 14].

This theorem and the proof is due to Arora, Lund, Motwani, Sudan and Szegedy [ALM+98].

4.2.4 PCP of Proximity

In this section, we will show that the above construction of Arora et al. actually can be used
to prove a slightly stronger statement, namely that Circuit-Value (Circuit-VAL) has a PCP
of Proximity of exponential length. we will not explicitly define what a PCP of proximity
is in this lecture, however we will prove this stronger statement.

The PCP verifier given above verifies the existence of a satisfying assignment z for the
circuit C. The assignment w itself, however, only enters into the proof in lz and quadz.
If we wished in addition to verify that some particular assignment w (to the input gates
only), given implicitly via oracle access to the verifier, is close to a satisfying assignment of
the circuit C, we could do the following additional test. Informally speaking, such a verifier
that checks that checks that w is in the proximity of a satisfying assignment is called a
”PCP of proximity (PCPP)” verifier.

Definition 4.12. PCPP Verifier The verifier is given to inputs – the explicit input, the
circuit C, which it can read in its entirety and the implicit input w, which it has oracle
access to. As before the proof oracles are f : {0, 1}n → {0, 1} and f ′ : {0, 1}n×n → {0, 1}.
The PCPP verifier performs all of the tests of the PCP verifier and the following additional
test

4. Proximity test
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(a) Choose i ∈R {1, 2, . . . , k}, z′ ∈R {0, 1}n

(b) Check that wi = f (z′ + ei)− f (z′)

where by ei we refer to the axis-parallel unit-vector (0, . . . , 0, 1, 0, . . . , 0) that has a 1 in its
i-th co-ordinate and 0 elsewhere.

The proof length is as before, the number of random coins increase by log2 (k)+n, while
the PCPP verifier makes three more queries than the PCP verifier resulting in a total of 17
queries.

Claim 4.13 (Completeness). If f = lz, f ′ = quadz and z is a satisfying assignment for C
which is equal to w in its first k bits, then the PCPP verifier accepts with probability exactly
1.

Claim 4.14 (Soundness). There exists a δ0 > 0 such that for all δ ≤ δ0, if the PCPP
verifier accepts with probability at least 1− δ, then there exists a satisfying assignment z for
C which is equal to w′ in its first k bits, f is δ-close to lz, and f ′ is δ-close to quadz, and
furthermore w′ is 3δ-close to w.

Proof. Since the PCPP verifier accepts with probability at least 1 − δ, it follows from the
soundness of the PCP Verifier that there there exists a satisfying assignment z for C, f is
δ-close to lz, and f ′ is δ-close to quadz. We now analyze the proximity test as follows: Since
z′ is a random element of {0, 1}n, we have

• With probability at least 1− δ, f (z′) = lz(z′)

• With probability at least 1− δ, f (z′ + ei) = lz (z′ + ei)

Hence, with probability at least 1−2δ, f (z′ + ei)−f (z′) = lz(z′+ei)− lz(z′) = lz(ei) =
zi = (w′)i. Since we also have that f (z′ + ei) − f (z′) = wi with probability 1 − δ (by the
proximity test), we see that wi = (w′)i with probability at least 1−3δ. Hence, δ(w,w′) ≤ 3δ.

The notion of a PCP of proximity has appeared in several guises in the PCP liter-
ature, though it was formally defined independently by Ben-Sasson et al [BGH+06] and
Dinur and Reingold [DR06]. The above construction appears in the work of Ben-Sasson et
al [BGH+06].
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