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Lecture 5: PCPs of Proximity, Proof Composition

Lecturer: Prahladh Harsha Scribe: Bill Fefferman

In today’s lecture we will first define a new variant of PCP, called PCPs of Proximity,
and then use this we use to perform ”proof composition”, a necessary ingredient in all
existing PCP constructions to reduce the size of the alphabet or equivalently to reduce the
query complexity. In fact, proof composition will be one of the phases of Dinur’s proof of
the PCP, that we will discuss in the next few lectures. To begin with, recall the result
proved towards the end of last lectuere.

Theorem 5.1. There exists a probabilistic verifier V , such that when V is given

• a circuit description C with n gates, as explicit input (that it can read in its entirety)

• an assignment w to C, as implicit input (that it has oracle access to)

• and oracle access to a proof π,

V tosses O(n2) random coins and proceeds to query a constant, O(1) locations in the
assignment-proof (w,π) pair and accepts/rejects the assignment-proof pair according to the
following completeness and soundness rules.

Completeness:
C(w) = 1 =⇒ ∃π,Pr[V (w,π)(C) = acc] = 1.

Soundness: There exists a δ0 such that for all δ < δ0, the following holds

∃π,Pr[V (w,π)(C) = acc] ≥ 1− δ =⇒ ∃w′, C(w′) = 1 and δ(w,w′) ≤ 3δ

Or equivalently

δ(w, SAT (C)) > 3δ =⇒ ∀π,Pr[V (w,π)(C) = acc] < 1− δ,

where SAT (C) represents the set of satisfying assignments to the circuit C.

Throughout the notes, whenever we state two strings are ”δ−far” (or δ-close), we will
be refering to the Hanning distance between the two strings. More precisely, the Hamming
distance ∆(x, y) is the number of bits x and y agree on. x is said to be δ-close to y if
∆(x, y) ≤ δn and δ-far otherwise. A string x is δ-close to a set A, if there exists a y ∈ A
that is δ-close to x.

5.1 PCPs of Proximity

In this section, we define the object of interest in Theorem 5.1. These objects are refered
to as PCPs of proximity or assignment testers in literature.
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Observe that the input to the verifier comes in two parts – the explicit input C and the
implicit input w. PCPs of proximity, in general, will deal with such inputs divided into two
portions, one which will be explicit, or given to the verifier outright, and the other will be
only accessible as an oracle – the ”implicit” input. We formalize this using the notion of
”pair” language.

Definition 5.2. A L is called a ”pair language” if its instances come in two parts of
the form (x, y). We will refer to the first input x as the explicit input and the second
input y as the implicit input. Also for all x, define the language Lx associated with x as
Lx = {y|(x, y) ∈ L}

One example of a pair language, which we have already discussed in Theorem 5.1 is the
following Circuit-VAL = {(C,w)|C(w) = 1}. More generally, we will consider pair languages
of the form, where the explicit input is a NP-instance and the implicit input is a candidate
NP-witness.

Definition 5.3. Fix functions r, q : Z≥0 → Z≥0; s, δ : Z≥0 → [0, 1]. We say that a pair
language L has a probabilistically checkable proof of proximity (PCPP) with soundness error
s and proximity parameter δ if there exists a probabilistic time verifier V , that on explicit
input x and implicit input y (via oracle access) and with oracle access to a proof π, tosses at
most r(|x|) random coins, probes at most q(|x|) locations in (y, π) and then accepts/rejects
the (x, y, π) triplet meeting the following two conditions

Completeness: If (x, y) ∈ L, then there exists a proof π such that

Pr[V (y,π)(x) = acc] = 1 (1)

Soundness: If y is δ(|x|)-far from Lx, then for every π, the verifier V (x) accepts oracle
y ◦ π with probability strictly less than s(|x|). i.e.,

Pr[V (y,π)(x) = acc] < s(|x|) (2)

We use the shorthand notation “L ∈ PCPP1,s[r, q, δ]” to state the above fact.

A couple of remarks on the definition.
Remark

• The verifier V barely reads the second input y. Thus, it is unfair to expect it to
distinguish inputs (x, y) in L from those not in L. Hence, it is only expected to
distinguish between strings (x, y) which are in the language from strings (x, y) where
y is δ-far from the language Lxlanguage. In short, the verifier only checks if y is in
the proximity of Lx. Hence, the name “PCP of Proximity”.

• All of the parameters are measured in terms of the explicit input x

• A PCPP is, in some sense, both a strengthening and a weakening of a PCP. It’s
weaker because the PCPP only rejects those (x, y) pairs where y is δ-far from Lx.
However, the PCPP is more stringent since it only has oracle access to y. It happens
to be the case that the stringent condition makes it harder to build PCPPs than the
correspond PCPs.
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• There is a very well-defined sense in which PCPPs are ”harder” to construct than
normal PCPs. I.e., If Circuit-VAL ∈ PCPP1,s[r, q, δ] then Circuit-SAT ∈ PCP1,s[π, q].

Theorem 5.1 can now be restated using the above notation as follows.

Theorem 5.4. ∃δ0 such that for all δ < δ0

Circuit-VAL ∈ PCPP1,1−δ[O(n2), 17, 3δ].

5.2 Proof Composition

In this section, we will introduce the notion of proof composition, an important ingredient
in all PCP constructions. Before we go to proof composition, let us look at the actions of
a PCP verifier more closely. On input x and oracle access to a proof π, a PCP verifier
tosses some random coins and based on these random coins and the input, it queries the
proof in a set number of locations and accepts/rejects depending on whether the bits of the
proof in the location satisfy some Boolean predicate. Or to be more formal (or pedantic), if
V is the verifier, on input x and random coins R, the verifier outputs a pair (I,D) (denoted
by V (x,R) → (I,D)), where I = I(x,R) is the set of indices it queries the proof at and
D = D(x, r) the description of the Boolean predicate circuit. The verifier then proceeds
to query the proof at locations I and accepts the proof if D(π|I) = 1, that is, the proof π
restricted to the index set I satisfies the Boolean predicate. The completeness and soundness
in Definition 5.3 as follows:

Completeness: If (x, y) ∈ L, then there exists a proof π such that

Pr[D((y ◦ π)|I) = 1] = 1 (3)

Soundness: If y is δ(|x|)-far from Lx, then for every

Pr[D((y ◦ π)|] < s(|x|) (4)

The goal behind proof composition, introduced by Arora and Safra [AS98] is to compose
two PCPs to improve the query complexity of the composed PCP system.

First why, do we want to compose PCPs? Recall that our original goal is to construct
PCPs with O(log n) randomness and O(1) query complexity. In last lecture, we constructed
PCPs with polynomial randomness and O(1) query complexity. However, any “direct” PCP
construction, that we are aware of, that achieves sub-polynomial randomness complexity
requires super-constant query complexity. How do we then construct PCPs that satisfy our
original goal? Let us look at this problem more closely. As a concrete example, consider the
PCPs of Babai et al. [BFLS91] that achieves poly log n randomness and poly log n query
complexity. Elaborating, the verifier tosses poly log n random coins and produces a set I
of polylogn indices and a decision circuit D and wishes to check if D(π|I) = 1. Is it
possible to verify that “”D(π|I) = 1” without reading all of π|I? On the face of it, this
seems impossible. But recall that a PCP does something very similar – it verifies a proof
without reading the proof in its entirety. The ingenuous idea of Arora and Safra was to
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use a PCP recursively to check that D(π|I) = 1. For the purpose of differentiation, we will
call the original PCP, the outer PCP and this new PCP, which is supposed to check that
D(π|I) = 1 without reading all of π|I , the inner PCP. The main idea of proof composition
if that the outer verifier Vout, instead of checking if pi|I satisfies the predicate D, transfers
control to another ”inner” PCP verifier, Vin which performs this check with the help of an
additional proof.

The above discussion is very informal. Let us see if we can make this idea work. First
notice that the input to the inner verifier Vin is the circuit D and the bits π|I . By definition,
a PCP reads its entire input. Thus, Vin read at least |I| bits. This is of no use, as the query
complexity has not reduced. This is where PCPs of proximity come to the rescue. Recall that
a PCP of proximity verifier gets two inputs, one explicit input and another implicit input,
which it has oracle access to. We could thus use a PCP of proximity for the inner verifier
Vin, which is given the circuit D as explicit input and the proof bits π|I as an implicit input.
We could thus compose an outer PCP verifier Vout with a inner PCPP verifier Vin to reduce
the query complexity. Observe that the query complexity of such a composed PCP Verifier is
that of the inner verifier, which could be considerably smaller than that of the outer verifier.

Does such a composition make any sense? Syntactically, we can compose a outer PCP
Verifier with an inner PCPP verifier. But does the resulting composed PCP Verifier having
any meaningful semantics? We note now that merely composing PCP verifier with a PCPP
verifier will not necessarily give anything meaningful since the soundness of the outer PCP
verifier Vout only guarantees that if the assertion is true, then the proof bits π|I satisfy D and
if the assertion is false then D(π|I) = 0. However, if the Vin is now a ”PCP of proximity”,
we will only be able to distinguish between the inputs πI that satisfy the Boolean predicate
D and those that are ”sufficiently” (or δ-)far from a satisfying D. For this purpose, we
strengthen the soundness guarantee of the outer PCP verifier as follows: recall the standard
soundness guarantee of a PCP verifier.
Soundness: x /∈ L =⇒ ∀π, Pr[D(π|I) = 1] < S(|x|)

We will replace the above soundness requirement by a more stringent one, that we call
robust soundness.
Robust) Soundness: x /∈ L,∀π,Pr[π|I is ρ-close from SAT (D)] < S(|x|).

In other words, the local view π|I not only violates the predicate D with probability s, but
is in fact ρ-far from satisfying the predicate D with probability s. We call s the soundness
error as before and ρ the robustness parameter of the PCP. A PCP that satisfies the robust
soundness condition is called a robust PCP (a robust PCPP is defined similarly). If the
robustness parameter is ρ, we denote the corresponding PCP as rob-PCP1,1−ε[r, q, ρ]. In the
case of PCPs of proximity, we refer to the corresponding PCPP as rob-PCP1,1−ε[r, q, δ, ρ]
where δ and ρ are respectively the proximity and robustness parameters respectively.

We are now ready to prove the Composition Theorem, which must be evident from the
above discussion. In the following we will refer to the decision complexity of the PCP(P)
verifiers, which is basically the size of the decision circuit D output by the corresponding
verifier.

Theorem 5.5 (Composition). Suppose that for functions rout, rin, dout, din, qin : N → N
and εout, εin, ρout, δin : N → [0, 1],

• Language L has a robust PCP verifier Vout with randomness rout, decision complexity
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dout, robust-soundness error 1− εout and robustness parameter ρout

• Circuit-VAL has PCPP verifier called Vin with randomness rin with query complexity
qin, decision complexity din, proximity parameter δin, and soundness error 1− εin

• δin(dout(n)) ≤ ρout(n), ∀n

(Composed PCP:) Then, L has a PCP verifier Vcomp so that

• randomness complexity rout(n) + rin(dout(n))

• query complexity qin(dout(n))

• decision complexity din(dout(n))

• soundness error 1 - εout(n) · εin(dout(n))

Also, we will show

• If (instead of being a PCP) the verifier Vout is a PCPP with proximity parameter
δout(n) then the composed verifier Vcomp is PCPP with proximity parameter δout(n)

• If Vin has robust-soundness parameter ρin(n), then Vcomp has robust-soundness with
robustness parameter ρin(dout(n)).

Proof. As mentioned in the discussion above, the main idea here is that we use the outer
PCP verifier to select the positions in the proof to look at and then transfer control to
the inner PCPP which verifies that the positions are close to being accepted by the outer-
verifier’s decision circuit. Thus, the new proof consists of a proof for the outer verifier as
well as new proofs for the inner verifier. Each proof for the inner verifier will correspond to
a possible setting of the outer verifier’s random coin tosses. We index the positions of the
new (combined) oracle by pairs so that (out,i) denotes the i’th position in the part of the
oracle that represents the outer verifier’s proof oracle, and (R, j) denotes the j’th position
in the R-th ”auxiliary” block (representing the R-th possible proof, which is associated
with the outer verifier’s coins). We now formally describe the verifier produced under the
composition, which we call Vcomp(x).

1. Choose R←R {0, 1}rout

2. Run Vout(x;R) to obtain Iout = (i1, ..., iqout) and Dout

3. Run Vin(Dout) (on random coin tosses) to obtain Iin=((b1, j1)...(bqin , jqin)) and Din

(Here we are using the convention for a PCP of proximity, that if b = 0, then the
query (b, j) refers to the j-th position in the implicit input and if b = 1, then the the
query (q, j) refers to the j-th position in the proof oracle.

4. For each l = 1, ..., qin, determine the queries of the composed verifier

(a) If bl=0, set kl = (out, ijl) i.e., Vin’s queries to its input oracle are directed to the
corresponding locations in Vout’s proof oracle
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(b) If bl = 1, set kl = (R, jl) i.e., Vin’s queries to its R’th possible proof oracle are
directed to the corresponding locations in the auxiliary proof.

5. Output Icomp = (k1, ..., kqin) and Din.

It is easy to verify that Vcomp satisfies the above randomness, query complexity, decision
complexity, and computational complexities. Now we need to verify completeness and
soundness.

Suppose that x ∈ L. Then by completeness of the outer verifier, there exists a proof
πout making Vout accept with probability 1. In other words, for every R ∈ {0,1}rout if we set
(Iout, Dout) = Vout(x,R), we have Dout(πout|Iout) = 1. By completeness of the inner verifier,
there exists a proof πR such that Vin(Dout) accepts the oracle π|Iout ◦πR with probability 1.
If we set πt(t, )̇ = πt() for all t ∈ {out} ∪ {0,1}rout then Vcomp accepts π with probability 1.

Suppose that we are in the soundness case, with x /∈ L. Let π be any oracle. Define
oracles πt()=π(t, ). Here is where we use robust soundness. by the robust-soundness prop-
erty of Vout with probability greater than εout over the choices of R ∈ {0,1}rout

, if we set
(Iout, Dout) = Vout(x;R), then πout|Iout is ρout−far from satisfying from Dout. Fixing such
an R, by the PCPP-soundness of Vin, it holds that Vin(Dout) rejects the oracle πout|Iout ◦πR
with probability greater than εin. Therefore Vcomp(x) rejects oracle π with probability at
least εout · εin.

We show the next two claims, and they follow easily, If Vout is a PCPP verifier, then
the input is of the form (x, y) where y is ”implicit” or available by oracle access only. In
this case we use the same proof above but replace references to the oracle πout with y ◦πout,
and for soundness we should consider the case that y is δ-far from L(x). If Vin has robust-
soundness, then at the end of the soundness analysis, we note that not only is πout|Iout ◦ πR
rejected with greater probability than εin but rather it is ρin-far from being accepted by
Vin (and also Vcomp)

The notion of proof composition was introduced by Arora and Safra [AS98]. The above
modular form of composition is due to Ben-Sasson et al [BGH+06] and Dinur and Rein-
gold [DR06].

5.2.1 Consequences of Composition

Instantiating the inner PCP of proximity with that obtained in Theorem 5.1, we get the
following corollary of the Composition Theorem

Corollary 5.6. There exists δ0 such that, if L ∈ rob-PCP1,1−ε[r, q, ρ] then L ∈ PCP1,1−ε′ [r+
O(q2), 17] where ε′ = ε ·min{ρ, 3δ0}/3.

The above corollary shows that any robust PCP (not necessarily constant query) for L
can be composed with the exponential sized PCP of proximity for Circuit-VAL to obtain a
constant query PCP for L with at most an O(q2) increase in randomness. However, to do
this we first need to construct a robust PCP for L. We discuss below how this is performed.

Note that any PCP for L with query complexity q is trivially a robust PCP with ro-
bustness parameter 1/q as if a local view is rejected, at least 1 bit of the local view (i.e.,
1/q-fraction of the local view) must be changed in order to make it an accepting view. Thus,
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PCP1,1−ε[r, q] ⊆ rob-PCP1,1−ε[r, q, 1/q]. Extending the same idea to a non-Boolean alphabet
Σ, we get PCPΣ

1,1−ε[r, q] ⊆ rob-PCPΣ
1,1−ε[r, q, 1/q]. However, we need to convert the PCP

into a Boolean alphabet before composing it with the exponential PCPP as in Corollary 5.6.
A trivial way to convert a PCP over a non-Boolean alphabet into Boolean string is to encode
every symbol of the alphabet Σ using log2 |Σ| bits to obtain PCPΣ

1,1−ε[r, q] ⊆ PCP1,1−ε[r, q ·a]
where a = log2 |Σ|. However, this trivial conversion ignores the fact that the original non-
Boolean PCP has robustness 1/q. The converted Boolean PCP has robustness only 1/qa.
We can instead perform the following conversion that almost retains the original robust-
ness: Encode every symbol of |Σ| using a good error-correcting with constant rate and linear
distance. Suppose this encoding converts every symbol of Σ into C log2 |Σ| = C log2 a bits
and furthermore the distance of the code is µCa. Such a conversion increases the num-
ber of bits queried from qa to O(qa) (more precisely qa/µ. However, observe that the
robustness of this converted PCP is at least (µCa)/Cqa = µ/q . Hence, we have that
the PCPΣ

1,1−ε[r, q] ⊂ rob-PCP1,1−ε[r,O(qa), O(1/q)] where a = log2 |Σ|. Combining these
observations with Corollary 5.6, we have the following proposition.

Proposition 5.7.
PCPΣ

1,1−ε[r, q] ⊆ PCP1,1−ε′ [r +O(q2a2), 17]

where ε′ = ε ·min{O(1/q), δ0}/3.

Sometimes it is useful to convert the final constant-query PCP (constant =17 in above)
which is over the Boolean alphabet into a 2-query PCP (over a larger alphabet). This is
typically done by issuing 2 queries — one of which is a query including all queries bundled
together and the other one a random query and then checking that the answer to all the
queries satisfies the local constraint and that the answer to the random query is consistent
with the answers to the bundled query. This converted PCP is over an alphabet |Σ| such
that log2 |Σ| = q. This process however reduces ε by a factor of 1/q. More formally,

PCP1,1−ε[r, q] ⊆ PCPΣ
1,1−ε/q[r + log2 q, 2],

where Σ is any alphabet such that log2 |Σ| ≥ q (see Exercise 1 for more details).
Combining this conversion with Proposition 5.7, we obtain the following:

Lemma 5.8.
PCPΣ

1,1−ε[r, q] ⊆ PCPΣ′
1,1−ε′ [r +O(q2a2) + log2 17, 2]

where ε′ = ε ·min{O(1/q), δ0}/3 ·17, a = log2 |Σ| and Σ′ is any alphabet such that log2 |Σ′| ≥
17.

The above lemma will be used in the final phase (alphabet reduction) of Dinur’s proof of
the PCP Theorem.
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