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Lecture 6,7,8: Dinur’s Proof of the PCP Theorem
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In the next three lectures, we will present Dinur’s proof of the PCP Theorem. Let us
first recall that the statement of the PCP Theorem.

Theorem 6,7,8.1 (PCP Theorem). There exists ε ∈ (0, 1) and constants Q,C ∈ Z≥0 such
that

3-COLOR ∈ PCP1,1−ε[C log n,Q].

It will be convenient to rephrase the PCP Theorem in terms of a 2-query PCP since
then we can view the PCP as a constraint graph (explained below). However, as long as
the alphabet is {0, 1}, any PCP for NP requires at least three (3) queries unless NP = P
(see Problem Set 1). For this purpose, we work over a slightly larger, but constant sized
alphabet.

Theorem 6,7,8.2 (PCP Theorem (restated)). There exists ε ∈ (0, 1) and constant C ∈ Z≥0

and an alphabet Σ (with |Σ| > 2) such that

3-COLOR ∈ PCPΣ
1,1−ε[C log n, 2].

As mentioned earlier, it will be convenient to view a 2-query PCP as a constraint graph.

Definition 6,7,8.3 (Constraint Graph (CGΣ)). For an alphabet Σ, an instance of CGΣ is
of the form G = ((V,E), C) where (V,E) is an undirected graph, and C is a set of constraint
functions, one corresponding to each graph edge, i.e., C = {cE : Σ2 → {0, 1}|e ∈ E}. A
coloring π : V → Σ that assigns color c1 to vertex v1 and c2 to vertex v2 is said to satisfy
the coloring constraint c(v1,v2) on edge (v1, v2) if c(v1,v2)(c1, c2) = 1. The main problem is to
find an assignment π : V → Σ that satisfies all the coloring constraints.

We will denote the size size(G) of such an instance by the number of edges |E|1.

Given an instance G = ((V,E),Σ, C) and a coloring π : V → Σ, let

UNSATπ(G) =
|{(u, v) ∈ E|c(u,v)(π(u), π(v)) = 0}|

|E|
.

In other words, UNSATπ(G) is the fraction of edges violated by π. Let UNSAT (G) denote
the minimum UNSATπ(G) over all assignments π : V → Σ.

The gap problem corresponding to constraint graph is as follows:

Definition 6,7,8.4. For any 0 < β < α < 1, the gap problem gap-CGΣ
α,β has instances of

the form G = ((V,E), C) and its YES and NO instances are as defined below.

YES = {G|UNSAT (G) ≤ 1− α}
NO = {G|UNSAT (G) ≥ 1− β}

1To be exact, the size of the instance description is O(|E| log |V |) where the constant hidden in the O(·)
notation depends on the alphabet Σ, but we will ignore the logarithmic dependence.
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Observe that an equivalent formulation of the PCP Theorem, in the language of con-
straint graphs, is the following:

∃ε ∈ (0, 1) and an alphabet Σ such that gap-CGΣ
1,1−ε is NP-hard.

Furthermore, it trivially follows from the fact that 3-COLOR is NP-hard that gap-CGΣ
1,1− 1

n2

is NP-hard or equivalently 3-COLOR ∈ PCPΣ
1,1− 1

n2
[O(log n), 2] for any alphabet Σ that

contains at least 3 symbols (i.e., |Σ| ≥ 3).

6,7,8.1 Gap Amplification

We observed above, that to prove the PCP Theorem, we essentially need to improve the
gap between the YES and NO instance from 1/n2 to a constant ε. The gap amplification
lemma essentially does this in several stages.

Lemma 6,7,8.5 (Gap Amplification Lemma [Din07]). There exists an alphabet Σ and
α ∈ (0, 1) such that

PCPΣ
1,1−ε[r, q] ⊆ PCPΣ

1,1−ε′ [r +O(1), 2],

where ε′ = min{2ε, α}.
OR (equivalently)

There exists a polynomial time reduction from gap-CGΣ
1,1−ε to gap-CGΣ

1,1−ε′ where ε′ is as
defined above. Furthermore, this reduction satisfies that the size of the output instance is at
most linear in the size of the input instance.

The gap amplification lemma states that the gap can be increased from ε to 2ε as long
as the gap is not already a constant α at the cost of a constant increase in the randomness.
We can now prove the PCP Theorem starting from the Gap Amplification Lemma.

Proof of PCP Theorem. We first observe that the gap amplification increases the unsatisfi-
ability factor of the instance G by a factor of 2 (if it is not already a constant) and in doing
so it blows up the size of the instance by at most a constant factor. We can hence apply
this lemma O(log n) times to improve the gap from 1/n2 to α with at most a polynomial
blowup in size, thus proving the PCP Theorem.

Thus it suffices for us to prove the Gap Amplification Lemma 6,7,8.5 and this will be
our goal for the next three lectures.

First, let us recall some techniques to improve the gap that we have already seen. The
first is sequential repetition (a closely related one is parallel repetition, more of which we
will see later in this course). Both these types of repetition dramatically improve the gap,
however at a phenomenal cost in the randomness. In fact, repeating the PCP O(t) times,
improves the gap from ε to 1 − (1 − ε)t. More precisely, if UNSAT (G) ≥ ε (i.e., for every
coloring π : V → Σ, we have

Pr
e=(u,v)

[ce(π(u), π(v)) 6= 1] ≥ ε,

6,7,8-2



then repeating this t times we have

Pr
e1=(u1,v1),...,et=(ut,vt)

[∃i, ce(π(u), π(v)) 6= 1] ≥ 1− (1− ε)t.

Thus, this improves the gap considerably however at the cost of an O(t) blowup in the ran-
domness. This increase in randomness is something we cannot afford. Is there a randomness
efficient way of attaining the same improvement in gap? Dinur’s key observation is that this
gap improvement can be achieved if the underlying constraint graph is a constant-degree
expander and the t edges are chosen by a random walk of length t along the expander.
However, there is no guarantee that the underlying constraint graph to is a constant-degree
expander. This necessitates an initial preprocessing phase in which we massage the con-
straint graph into a constant-degree graph. Furthermore, as we will see later, the PCP
constructed by taking a length t walk has an exponential size in blowup. Recall, that we
wanted both the input and output alphabet in the gap amplification lemma to be the same.
However, proof composition is tailor-made to handle alphabet reduction. We can thus apply
proof composition at the end to reduce the alphabet back to the original size. Thus, the
proof of the gap amplification lemma involves the following phases.

Phase I: preprocessing In this phase, we transform the underlying constraint graph into
a constant degree expander at the cost of a constant deterioration in the gap and a
constant additive increase in the randomness.

Phase II: graph powering In this phase, we construct a new PCP by performing a t-
length random walk on the constraint graph (which is guaranteed to be an expander
by phase I). This phase dramatically increases the gap at the cost of an additive
increase in randomness. However, the alphabet would have exponentially blown up
from Σ to Σdt

where d is the degree of the underlying expander.

Phase III: alphabet reduction In the final phase, we reduce the alphabet back to Σ by
proof composition. This stage accounts for a further constant additive increase in
randomness and deteriorates the gap by a constant factor.

The deterioration in the gap in phases I and III are more than compensated by the improve-
ment achieved in phase II. We will look at these phases in detail in the next few lectures.
But, now we need some preliminaries regarding expanders.

6,7,8.2 Expanders – Preliminaries

For a graph G = (V,E) on n vertices, the edge expansion φ(G) is defined as follows:

φ(S) =
E(S, S̄)
|S|

φ(G) = min
S⊆V,|S|≤n/2

φ(S)

We will be interested in graphs G whose edge expansion φ(G) is large (at least a constant).
Such graphs are very well-connected and have no “bottlenecks”. A complete graph for
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instance has edge expansion φ(G) ≥ Ω(n). However, we would be interested in sparse
graphs, specifically d-regular graphs for some constant d.

It will be more convenient to work with the spectral notion of expansion. For any
d-regular graph, let AG denote the adjacency matrix (i.e., (AG)i,j = 1 if (i, j) ∈ E and
0 otherwise). In the case multi-graphs, (AG)i,j refers to the number of edges between i
and j, while for weighted graphs it refers to the weight of edge (i, j). Let us look at the
eigenvectors an eigenvalues of this matrix AG. Recall that v is an eigenvector for matrix
A with eigenvalue λ if Av = λv. Since AG is a real symmetric matrix, it has n real-valued
eigenvalues, say λ1 ≥ λ2 ≥ · · · ≥ λn. Note that the all ones vector 1 = (1, 1, . . . , 1) is an
eigenvector of AG with eigenvalue d.

It is an easy exercise to check that d is in fact, the largest eigenvalue. Furthermore, the
number of eigenvalues that are equal to d is precisely the number of distinct components of
G. Also, the smallest eigenvalue λn is −d iff graph is bipartite. If the graph is connected
and non-bipartite, then the remaining eigenvalues are bounded in absolute value by d. This
will be our alternate definition of expanders.

Definition 6,7,8.6. A d-regular graph G on n nodes is an (n, d, λ)-expander if λ =
maxi{|λi|} = max{λ2, |λn|} is strictly bounded above by d (i.e., λ < d). We refer to this
gap d− λ as the spectral gap.

The following theorem shows the close relationship between the two definitions of ex-
panders (i.e., edge expansion φ(G) and the spectral gap d− λ).

Theorem 6,7,8.7. For a d-regular graph G,

φ2(G)
2
≤ d− λ ≤ 2φ(G).

Thus, if we a graph with good spectral expansion, it also has good edge expansion.
For the purpose of the proof of the gap amplification, we will assume the existence of

expanders for every n > 0. But for this one fact, our proof of the gap amplification lemma,
will be a self-contained one.

Theorem 6,7,8.8. There exist constant d and λ with λ < d and an explicit family of
(n, d, λ′)-expanders for every n with λ′ < λ.

Below we give some examples (without proof) of explicit expanders with a good spectral
gap (and hence good edge expansion).

1. Margulis/Gaber-Galil Expanders These expanders have vertex set of size n2 that
we identify with the set Zn×Zn where Zn is the ring of integers modulo n (to be precise,
we need to use the notation Z/nZ as Zp refers to p-adic numbers, but anyway. . . ).
The vertex given by (x, y) is connected to vertices

(x+ 2y, y)(x, 2x+ y)
(x+ 2y + 1, y)(x, 2x+ y + 1)

where all additions are done modulo n. We also add the edges corresponding to the
inverse transformation. Thus, this graph is a 8-regular graph on n2 vertices (possibly
has self-loops and multiple edges). One can show that this graph satisfies λ ≤ 5

√
2 < 8.
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2. Lubotsky-Phillips-Sarnak (LPS) Expanders The LPS graph has vertex set V =
Fp ∪ {∞} where p is a prime. Fp is the finite field of the set of integers modulo p.
We extend addition and multiplication in this field to the special point ∞ as follows:
0 · ∞ = 1, x +∞ = ∞, z · ∞ = ∞ for all x ∈ Fp and z ∈ F∗p = Fp \ {0}. The vertex
x is then connected to the vertices x−1, x + 1 and x − 1. Observe that this graph
is 3-regular graph. In fact, this graph has a very simple structure. If one ignores
the point ∞ it looks like a cycle with a set of matching edges added in. It is known
that for this graph λ < 3. This graph is a considerable simplification of the original
LPS graphs, which are known to have the best spectral gap (such graphs are called
Ramanujan graphs).

In the next section, we prove some properties of expanders that we require in the proof
of the gap amplification lemma.

6,7,8.3 Expanders – properties

The λ of a graph has the following nice characterization.

λ = max
x∈Rn\{0},x·1=0

|〈AGx, x〉|
〈x, x〉

(1)

This is also known as the Rayleigh quotient of the matrix AG. This characterization has
an easy proof. Since AG is a real symmetric matrix, the eigen vectors 1 = v1, v2, . . . , vn
form an orthonormal basis for the space Rn. Any vector x ∈ Rn, can thus be written as
x =

∑
aivi. If x · 1, we have x =

∑n
i=2 aivi. Now, AGx is given by AGx =

∑n
i=2 λiaivi.

Thus, 〈AGx, x〉 =
∑n

i=2 a
2
iλi which is at most λ

∑
i=2 na

2
i = λ〈x, x〉. Thus, the Rayleigh

quotient is at most λ. For the other direction, observe that 〈AGv2, v2〉 = λ2〈v2, v2〉 and
〈AGvn, vn〉 = λn〈vn, vn〉. Hence, the Rayleigh quotient is at least λ.

We can now prove the second inequality in Theorem 6,7,8.7, which is the direction we
would need in the preprocessing phase.

Lemma 6,7,8.9. For a d-regular graph G, d− λ ≤ 2φ(G).

Proof. Let S ⊂ V be any subset of vertices such that |S| ≤ n/2. We need to show that
φ(S) ≥ (d− λ)/2. We will prove this by using the Rayleigh quotient characterization of λ.

Consider the vector x defined as follows:

xv =

{
−|S̄| if v ∈ S
|S| if v ∈ S̄
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It is easy to check that ‖x‖2 = |S||S̄|2 + |S̄||S|2 = |S||S̄|n. Let us calculate 〈AGx〉.

〈AGx, x〉 =
∑
u

xu
∑

(u,v)∈E

xv

= 2
∑

(u,v)∈E

xuxv

= 2
∑

(u,v)∈E(S)

xuxv + 2
∑

(u,v)∈E(S̄)

xuxv + 2
∑

(u,v)∈E(S,S̄)

xuxv

= (d|S| − |E(S, S̄)|) · |S̄|2 + (d|S̄| − |E(S, S̄)|) · |S|2 − 2|E(S, S̄)| · |S| · |S̄|
= d|S||S̄|n− |E(S, S̄)|n2

Since x·1 = 0, we have 〈AGx, x〉 ≤ λ‖x‖2. Rearranging the terms, we obtain (d−λ)/n ≤
|E(S, S̄|/(|S||S̄|). However, since S ≤ n/2, we have |S̄| ≥ n/2. Hence, (d − λ)/2 ≤
|E(S, S̄|/|S|. Thus proved.

Recall that in the preprocessing phase, we need to massage the constraint graph into
an expander. A simple way to convert any graph into an expander is to superimpose an
expander over the given graph. The following claim that if two graphs are superimposed
over one another, then the spectral gap of the final graph is at least the spectral expansion
of each of the original graphs.

Lemma 6,7,8.10. If G and H are two regular graphs on the same set of vertices V with
degrees d and d′ respectively,then G′ = G∪H = (V,E(G)∪E(H)) is a (d+d′)-regular graph
satisfying

λ(G ∪H) ≤ λ(G) + λ(H).

Proof. This lemma is an easy consequence of the Rayleigh quotient characterization of λ.
We observe that AG∪H = AG +AH . Hence,

λ(G ∪H) = max
x:‖x‖=1,x·1=0

〈AG∪Hx, x〉

= max
x:‖x‖=1,x·1=0

(〈AGx, x〉+ 〈AHx, x〉)

≤ max
x:‖x‖=1,x·1=0

〈AGx, x〉+ max
x:‖x‖=1,x·1=0

〈AHx, x〉

= λ(G) + λ(H)

We also require the following estimate on the random-like behavior of a random walk
on an expander, which will be used in phase II.

Lemma 6,7,8.11. Let G = (V,E) be a (n, d, λ)-expander. Let F ⊂ E be a set of edges.
The probability p that a random walk that starts at a random edge in F takes its (i + 1)st

step in F as well, is bounded above by |F ||E| +
(
λ
d

)i
.
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Note that if the edges were chosen randomly and independently (instead of choosing
them along a random walk) then the above probability p is exactly |F ||E| . The above lemma
states that choosing the edges according to a random walk worsens this probability by at
most (λ/d)i.

The proof of this lemma is similar to that of the Expander Mixing Lemma. This proof
is reproduced verbatim from Dinur’s paper [Din07].

Proof. Let π be the distribution on vertices of G induced by selecting a random edge in
F and then a random vertex on which the edge is incident on. Let W be the support of
the distribution π. Hence, πv is the fraction of edges incident on v that are in F , divided
by 2. For any vertex v, let Fv denote the set of edges incident on v that are in F . Hence,
πv = |Fv|/2|F | ≤ d/2|F | since G is d-regular. Let yv be the probability that a random step
from v is in F , so yv = |Fv|/d = 2|F |πv/d. Or equivalently y = (2|F |/d)π.

Let A be the normalized adjacency matrix of G. The probability p equals the probability
of landing in W after i steps and then taking a step in F . Hence

p =
∑
v∈W

yv(Aiπ)v =
∑
v∈V

yv(Aiπ)v = 〈Aiπ, y〉 =
2|F |〈Aiπ, π〉

d
.

let 1 be all ones vector. Decomposing π along u and its orthogonal component we have
π = π‖ + π⊥. Observe that

‖π‖22 ≤

(∑
v

πv

)
·
(

max
v
πv

)
≤ 1 · d

2|F |
=

d

2|F |
.

Since G is a (n, d, λ)-expander,

‖Aiπ⊥‖2 ≤
(
λ

d

)i
‖π⊥‖2

≤
(
λ

d

)i
‖π‖2

By Cauchy-Schwarz,

〈Aiπ⊥, π〉 ≤ ‖Aiπ⊥‖2‖π‖2 ≤
(
λ

d

)i
‖π‖22

Combining we have,

p = 〈Aiπ, y〉 =
2|F |〈Aiπ, π〉

d
=

2|F |
d

(
〈Aiπ‖, π〉+ 〈Aiπ⊥, π〉

)
≤ 2|F |

d

(
1
n

+
(
λ

d

)i
‖π‖2

)
≤ 2|F |

d

(
1
n

+
d

2|F |

(
λ

d

)i)
=
|F |
|E|

+
(
λ

d

)i
.
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6,7,8.4 Proof of Gap Amplification Lemma

We are now ready to prove the gap amplification lemma. As indicated before, we will pro-
ceed in three phases - preprocessing, graph powering and alphabet reduction. We describe
each of these phases in detail in the following sections.

6,7,8.5 Phase I: Graph Preprocessing

The preprocessing step involves converting the underlying constraint graph into a constant
degree expander graph. This is performed in two steps: (a) converting the graph into a
constant degree graph and (b) “expanderizing” the constant degree graph.

Conversion into a constant degree graph Let Gn be a family of expander graph with
degree d− 1 and edge expansion at least φ0.

Let G = (V,E) be the underlying constraint graph The graph G = (V,E) is transformed
as follows: A vertex, v with degree dv is replaced by an expander Gdv on dv vertices and
the edges incident on v are now assigned to the vertices of Gdv , one edge per vertex. All
the vertices in the transformed graph, G′ = (V ′, E′) thus have degree d, where d− 1 is the
degree of any graph in the expander family. All the edges inside each expander graph have
equality constraints while the external edges retain the constraint they had earlier.

|V ′| =
∑

dv = 2|E|

|E′| = d

2
|V ′| = d|E|

Thus, the size of the new graph G′ = (V ′, E′) is at most a constant factor that of G.
Clearly, if UNSAT (G) = 0, then so is UNSAT (G′).
We now need to show that if UNSAT (G) is non-zero, then UNSAT (G′) is worsened

(i.e., reduced) at most by a constant factor. The intuition is that we can try to cheat by
giving different colors to the dv vertices. However, due to the property of the expander,
this will result in violating several of the equality constraints within each expander.

Let σ′ = σ′G′ : V ′ → Σ be the best coloring for G′. From this, we can obtain a coloring
σ : V → Σ for G, in which the color of a vertex v is the most popular of the colors assigned
to the corresponding “cloud” of dv vertices in G′.

Let µ = UNSAT (G). Let B be the set of edges violated by σ in G and B′ be the set
of edges violated by σ′ in G′. Define S to be the set of vertices in G′ whose color is not the
popular one (in the corresponding cloud). Since every edge in B should either be in B′ or
contribute to S, we have µ|E| ≤ |B| ≤ |B′|+ |S|.

• Case 1 : |B′| ≥ µ|E|/2

UNSAT (G′) =
|B′|
|E′|

≥ µ|E|
2|E′|

=
µ

2d
=
UNSAT (G)

2d
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• Case 2 : |S| ≥ µ|E|/2
Consider any vertex v in G and its corresponding cloud of vertices in G′. Let Sv be
the set of vertices in the cloud which did not get the popular color. For each color a,
define Sva = {u ∈ Sv|σ′(u) = a}. By the definition of popularity, |Sva | < dv/2. Now,
from the expansion property within each cloud, we get that |E(Sva , S̄va)| ≥ φ0|Sva |.
Note that the constraints for all the edges in E(Sva , S̄va) are violated. Summing over
the colors and clouds,

|B′| ≥
∑
|E(Sva , S̄va)|

2
≥ φ0|S|

2
≥ µφ0

4
|E| ≥ µπ0

4d
|E′|

Thus, UNSAT (G′) ≥ UNSAT (G)µφ0

4d

In either case, the transformation results in at most a constant factor drop in the fraction
of violated edge constraints.

The constraint graph G is thus converted into a constant degree d graph G′. Or in
PCP notation, PCPΣ

1,1−ε[r, 2] ⊆ PCPΣ
1,1−δε[r + logd, 2], where the constraint underlying the

second PCP is a d-regular graph and δ is a constant (dependent on d and φ0).

Expanderizing the graph The transformed graph G′ is d-regular. We superimpose with
a d̃-regular expander E on |V ′| nodes (i.e, the new superimposed graph has the same vertex
set as the original constraint edges, its edges are however the union of the two graphs –
the original constraint graph and the expander). We then impose dummy constraints on
the new edges (i.e., constraint that are always satisfied). G′′ is still an expander (with
constant degree, (d+ d̃)), but with slightly weaker spectral expansion given as follows: (this
calculation uses Lemma 6,7,8.10)

λ(G′′) ≤ λ(G′) + λ(E) ≤= λ(say).

Since, λ < d+ d̃, the final graph G′′ is a good expander.
Observe that if G′ is satisfiable, so is G′′.

UNSAT (G′) = µ⇒ UNSAT (G′′) = µ

(
d

d+ d̃

)
Thus, G = (V,E) is converted into a constant-degree ∆ = (d + d̃) expander graph

G′′ = (V ′′, E′′) with spectral expansion λ. This completes the preprocessing step.
Equivalently, we have in PCP notation, we have PCPΣ

1,1−ε[r, 2] ⊆ PCPΣ
1,1−δIε[r+O(1), 2],

where the constraint underlying the second PCP is a (n, d+ d̃, λ)-expander δI is a constant
(the deterioration caused by phase I).

6,7,8.6 Phase II: Graph Powering

Due to the preprocessing step, we can assume without loss of generality that the underlying
constraint graph G is d-regular expander graph and second eigenvalue expansion λ < d.
In the second phase, we will perform random walks on this expander to improve the gap.
More formally, we will show the following.

6,7,8-9



Lemma 6,7,8.12 (Graph Powering). Suppose

L ∈ PCPΣ
1,1−ε[r, 2]

and furthermore, the underlying constraint graph is a d-regular expander with second eigen-
value at most λ < d, then

L ∈ PCPΣ′
1,1−ε′ [r +O(t log t), 2]

where ε′ = Ω(t) min{ε, 1
t } and Σ′ = Σ1+d+d2+···+dt

.

Thus, the gap is improved by a multiplicative factor of t (unless the gap is not already
1/t) if the underlying constraint graph were a (n, d, λ)-expander. Since the preprocessing
phase guarantees that this is indeed the case, combining the two phases we have the following
corollary.

Corollary 6,7,8.13 (preprocessing+graph powering).

PCPΣ
1,1−ε[r, 2] ⊆ PCPΣ′

1,1−ε′ [r +O(t log t), 2]

where ε′ = Ω(t) ·min{δI · ε, 1
t } and Σ′ = Σ1+d+d2+···+dt

.

The presentation in this lecture is different from Dinur’s proof [Din07] which uses walks
of fixed length. We will instead use lazy random walks along the lines of Radhakrishnan’s
variant of Dinur’s proof [Rad06].

Given a PCP Verifier whose underlying graph is a (n, d, λ)-expander, we will construct
a new PCP verifier for this language whose gap is significantly better than the original
verifier. We can also construct the equivalent constraint graph of the new PCP verifier but
we will not do so here. Before describing the PCP verifier, let us first describe the new
alphabet Σ′ and the new proof π′.

Alphabet and Proof Recall that the original alphabet Σ was a set of colors and the
coloring (or proof) π : V → Σ specified the color of each vertex in the constraint graph.
The new alphabet Σ′ will be given by Σ′ = Σ1+d+d2+···+dt

and the new coloring (or proof)
will be given by a map π′ : V → Σ′. Note that 1 + d+ d2 + · · ·+ dt is an upper bound on
the number of vertices within distance t from a given vertex since the graph is d-regular.
As a result, given a color σ′ ∈ Σ′ for a vertex v, we can identify for each node w in the
t-neighborhood of v, a particular position in σ′. We say that the value of this position
corresponds to the “opinion” about the color of w in the old constraint graph held by v.
Given an assignment π′ : V → Σ′, we write π′(v)w for v’s opinion about w’s label. Note
that if w lies in the t-neighborhood of two vertices u and v, it might not be the case that
π′(u)w = π′(v)w, that is u and v might disagree on their opinion about w’s label.

To describe the verifier, we need to describe the following random walk on the constraint
graph.

Lazy Random Walk (LRW)

Input: v ∈ V , a vertex of the graph
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1. Set j ← 1 and v1 ← v

2. With probability 1/t,

Stop and output the entire sequence of vertices (v1 → v2 → · · · → vj) visited.

3. Else

(a) Choose a random edge (vj , vj+1) out of vertex vj
(b) Set j ← j + 1
(c) Goto Step 2

We are now ready to describe the PCP Verifier that proves Lemma 6,7,8.12. Suppose
L ∈ PCPΣ

1,1−ε[r, 2] and furthermore, the underlying constraint graph (V,E) is a d-regular
expander with second eigenvalue at most λ < d. We now describe a new PCP verifier for L
that performs a lazy random walk on the original constraint graph and checks all the edge
constraints along this walk.

Graph Powering PCP Verifier (GP-Ver)

Input: G = ((V,E), C) - constraint graph such that (V,E) is a (n, d, λ)-expander

Oracle access: Proof π′ : V → Σ′

1. Choose e = (v0, v1) ∈R E
2. Perform LRW(v1) to obtain the sequence of vertices (v1 → v2 → · · · → vl).

3. If l > B, accept

4. If l ≤ B,

(a) Set a← v0 and b← vl

(b) For each i = 1, . . . , l
Check if edge ei = (vi−1, vi) satisfies cei(π

′(a)vi−1 , π
′(b)vi) = 1

(c) Accept if all the checks pass

We will later set B = O(t ln |Σ|).
GP-Ver chooses a random edge (a, v1) of the original constraint graph (V,E). It then

performs a lazy random walk to obtain the walk v1 → v2 → · · · → vl = b. If this walk is too
long (i.e., l > B), the verifier accepts. Else it looks at the walk a = v0 → v1 → v2 → · · · →
vl = b and checks that for each edge ei = (vi−1, vi) along the walk, the opinion π′(a)vi−1

about the left end point vi−1 held by vertex a and the opinion π′(b)vi about the right end
point vi held by vertex b satisfy the constraint cei .

Randomness The amount of randomness required by the GP-Ver verifier is exactly
the amount of randomness required to choose a random edge (v0, v1) in E and perform
a lazy random walk of length at most B. The former is exactly r while the latter is
B(log d + log t) = O(t log t) (log d is required to choose a random edge and log t to flip a
coin that comes up head with probability 1/t).
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Completeness Suppose x ∈ L. Then there exists a coloring π : V → Σ that satisfies
every constraint ce ∈ C. Clearly, setting π′ : V → Σ′ such that π′(v)u = π(u) for all u and
v, causes GP-Ver to accept with probability exactly 1.

Soundness Suppose x ∈ L. let π′ : V → Σ′ be the coloring that maximizes the acceptance
probability of GP-Ver. We need to show that Pr[GP-Verπ

′
(G) = 1] ≤ 1 − ε′ where

ε′ = O(t) min{ε, 1/t}. For this purpose, we first construct an assignment π : V → Σ of the
original constraint graph as follows:

π(v) = arg-max
σ∈Σ

Pr
[
π′(w)v = σ|LRW (v) = (v = v1 → v2 → · · · → vl = w), l ≤ t

]
(2)

In other words, the assignment π(v) is defined as follows: Perform a lazy random walk
starting at v to reach the final vertex w. As long as v is within a t-neighborhood of w, w
has an opinion π′(w)v about v’s label. Conditioned on the walk being less that t steps, π(v)
is the most popular opinion held by all such w.

Since x ∈ L, it must be the case that π violates at least ε-fraction of the constraints
of C. Let F be some ε fraction of edges violated by π. For technical reasons (which we
encounter later), if |F |/|E| > 1/t, throw away edges in F such that |F |/|E| ≤ 1/t. Thus,
|F |/|E| = min{ε, 1/t}. The following claim will complete the proof of soundness for us.

Claim 6,7,8.14.

Pr
[
GP-Verπ

′
(G) = rej

]
= Ω(t) · |F |

|E|
.

Consider any step (u → v) along the path a = v0 → v1 → · · · → vl = b visited by
GP-Ver verifier (i.e., u = vi−1 and v = vi for some 1 ≤ i ≤ l). We call such a step (u→ v)
faulty if the following three conditions are met

• (u, v) ∈ F

• dG(u, a) ≤ t and π′(a)u = π(u)

• dG(v, b) ≤ t and π′(b)v = π(v)

Observe that if any step (vi−1 → vi) is faulty and the length of the walk is at most B,
GP-Ver rejects since c(vi−1,vi)(π

′(a)vi−1 , π
′(b)vi) = c(vi−1,vi)(π(vi−1), π(vi)) = 0. This leads

us to the following definitions: For any random walk a = v0 → v1 → · · · → vl−1 → vl = b,
chosen by GP-Ver , define random numbers NF , N,N∗ as follows.

NF = # {i|(vi−1, vi) ∈ F}
N = # {i|(vi−1 → vi) is faulty}

N∗ =

{
N if l ≤ B
0 otherwise

Thus, NF is the number of steps in F , while N is the number of faulty steps and N∗ =
N · 1l≤B where 1l≤B is the indicator random variable for the event “l ≤ B”. Clearly,
NF ≥ N ≥ N∗. Observe that GP-Ver rejects if N∗ > 0. The following claims bound the
first and second moments of N∗.
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Claim 6,7,8.15.

Exp [N∗] = Ω (t) · |F |
|E|

Claim 6,7,8.16.

Exp
[
N2
∗
]
≤ Exp

[
N2
F

]
= O (t) · |F |

|E|

Before proceeding to prove these claims, we will show how these claims suffice to prove
the soundness of the GP-Ver verifier.

Proof of Claim 6,7,8.14.

Pr[GP-Verπ
′
(G) = rej] ≥Pr[N∗ > 0]

≥Exp[N∗]2

Exp[N2
∗ ]

[By Chebyshev-Cantelli’s inequality]

=
(

Ω (t) · |F |
|E|

)2

·
(
O (t) · |F |

|E|

)−1

=Ω(t) · |F |
|E|

6,7,8.6.1 Exp[N∗] = Ω(t)|F|/|E|

In this section, we will show that the expected value of N∗ is at least Ω(t) times |F |/|E|.
The hard part will be to show that the expected number of faulty edges (i.e., Exp[N ]) along
a random walk is at least Ω(t)|F |/|E|. We can then easily convert this bound to a bound
on Exp[N∗] since it is very unlikely that the GP-Ver will take walks of length greater than
B. To bound Exp[N ], we would need the following proposition about the random walk
a = v0 → v1 → · · · → vl = b

Proposition 6,7,8.17. Fix any edge (u, v) ∈ E. Let walk = (a = v0 → v1 → · · · →
vl−1 → vl = b) be the random walk in the constraint graph taken by the GP-Ver verifier.
Conditioned on the fact that walk contains exactly k (u→ v) steps, the distribution of the
endpoints a and b of the walk satisfy the following:

1. The distribution of a is precisely that of an endpoint of a lazy random walk originating
at u.

2. The distribution of b is precisely that of an endpoint of a lazy random walk originating
at v.

3. a and b are independent.

Proof. We will first prove (2). Suppose instead of conditioning on the fact that walk makes
exactly k (u → v) steps, we had conditioned on walk making at least k (u → v) steps,
then (2) is obvious is obvious. In other words, if we set Yu→v to be the random variable
that denotes the number of (u → v) steps, then conditioned on the event “Yu→v ≥ k”,
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the distribution of the right end point b of the walk is precisely that of an endpoint of a
lazy random walk originating at v. Hence, for all vertices w ∈ V , the probability Pr[b =
w|Yu→v ≥ k] is independent of k and is precisely the probability Pr[b = w|LRW (v) = (v =
v1 → v2, · · · → vl = b)]. Let us call this probability pw. Note that we are actually interested
in the probability Pr[b = w|Yu→v = k]. If we show this quantity is also pw, we would be
done. Look at the following calculation:

pw = Pr[b = w|Yu→v ≥ k]

=
Pr[b = w ∧ Yu→v ≥ k]

Pr[Yu→v ≥ k]

=
Pr[b = w ∧ Yu→v = k] + Pr[b = w ∧ Yu→v ≥ k + 1]

Pr[Yu→v = k] + Pr[Yu→v ≥ k + 1]

=
Pr[b = w ∧ Yu→v = k] + pw · Pr[Yu→v ≥ k + 1]

Pr[Yu→v = k] + Pr[Yu→v ≥ k + 1]

Hence, it follows that

Pr[b = w|Yu→v = k] =
Pr[b = w ∧ Yu→v = k]

Pr[Yu→v = k]
= pw

This completes the proof of (2).
To prove (1), we observe that the distribution of walk = (a = v0 → v1 → . . . tovl−1 →

vl = b is identical to that of the reversed walk walkR = (b = vl → vl−1 → · · · → v1 → v0 =
a). Hence, the distribution of the left endpoint of walk conditioned on having taken exactly
k (u → v) steps is exactly the distribution of the right endpoint of walkR conditioned on
having taken exactly k (v → u) steps which from the above argument is the distribution of
the endpoint of a lazy random walk originating at u.

The above argument also shows that a and b are independent since once the middle of
the walk is fixed, the left and right ends are independent.

We are now ready to bound Exp[N ].

Claim 6,7,8.18. Exp[N ] ≥ t
4|Σ|2 ·

|F |
|E|

Proof. Fix some edge (u, v) ∈ F . Let Nu→v be the number of faulty (u→ v) steps along a
random walk. Note that N = 2

∑
(u,v)∈F Nu→v (the 2 because (u → v) steps are different

from (v → u) steps). Thus, by linearity of expectation it suffices to prove that Exp[Nu→v] ≥
t

8|Σ|2 ·
1
|E| . We have

Exp[Nu→v] =
∑
k≥1

Exp[Nu→v | exactly k (u→ v) steps ] · Pr[ exactly k (u→ v) steps ]

However, if one (u→ v) step along a walk is faulty so are all other (u→ v) steps along the
walk. Hence,

Exp[Nu→v] =
∑
k≥1

k · Pr[(u→ v) is faulty | exactly k (u→ v) steps ] · Pr[ exactly k (u→ v) steps ]
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Now,

Pr[(u→ v) is faulty | exactly k (u→ v) steps ]
= Pr[dG(u, a) ≤ t ∧ π′(a)u = π(u) ∧ dG(v, b) ≤ t ∧ π′(b)v = π(v) | exactly k (u→ v) steps ]

Now applying the above proposition which describes the distribution of a and b conditioned
on the walk taking exactly k steps we have,

Pr[(u→ v) is faulty | exactly k (u→ v) steps ]
= Pr[dG(u, a) ≤ t ∧ π′(a)u = π(u) ∧ dG(v, b) ≤ t ∧ π′(b)v = π(v) | a = e-LRW(u); b = e-LRW(v)]
= Pr[dG(u, a) ≤ t ∧ π′(a)u = π(u) | a = e-LRW(u)] · Pr[dG(v, b) ≤ t ∧ π′(b)v = π(v) | b = e-LRW(v)]

[By independence of a and b]
= (Pr[dG(u, a) ≤ t ∧ π′(a)u = π(u) | a = e-LRW(u)])2

In the above, we have used e-LRW(v) to denote the endpoint of the lazy random walk
originating at v. Observe that Pr[π′(a)u = π(u) | a = e-LRW(u); l ≤ t] is at least 1/|Σ|
since π(u) is chosen to be the most popular vote among π′(a)u conditioned on a = e-LRW(u)
and l ≤ t. Using this in the above, we have

Pr[dG(u, a) ≤ t ∧ π′(a)u = π(u) | a = e-LRW(u)]
≥ Pr[dG(u, a) ≤ t ∧ π′(a)u = π(u) ∧ l ≤ t | a = e-LRW(u)]
= Pr[π′(a)u = π(u) ∧ l ≤ t | a = e-LRW(u)]
= Pr[π′(a)u = π(u) | l ≤ t ∧ a = e-LRW(u)] · Pr[l ≤ t]

≥ 1
|Σ|
·

(
1−

(
1− 1

t

)t)
≥ 1

2|Σ|

Hence,

Pr[(u→ v) is faulty | exactly k (u→ v) steps ] ≥ 1
4|Σ|2

We can thus conclude that

Exp[Nu→v] ≥
∑
k≥1

k · 1
4|Σ|2

· Pr[ exactly k (u→ v) steps ]

=
1

4|Σ|2
∑
k≥1

kPr[ exactly k (u→ v) steps ]

=
1

4|Σ|2
· Exp[(u→ v) steps ]

=
1

4|Σ|2
· t

2|E|

where the last steps follows from linearity of expectation, the fact that the walk has t
steps on expectation and a step of the walk is likely to be a (u→ v) step with probability
1/2|E|.
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Having bounded Exp[N ], we can now bound E[N∗] by calculating the probability of the
event “l > B” if B = O(t ln |Σ|).

Proof of Claim 6,7,8.15.

Exp[N∗] = Exp[N · 1l≤B]
= Exp[N · (1− 1l>B)]
= Exp[N ]− Exp[N · 1l>B]
= Exp[N ]− Exp[N | l > B] · Pr[l > B]
≥ Exp[N ]− Exp[NF | l > B] · Pr[l > B]

= Exp[N ]− |F |
|E|
· Exp[l | l > B] · Pr[l > B]

≥ t

4|Σ|2
· |F |
|E|
− |F |
|E|
· (B + t)

(
1− 1

t

)B
≥

(
t

4|Σ|2
− (B + t)e−B/t

)
· |F |
|E|

≥ t

8|Σ|2
· |F |
|E|

where the last inequality is obtained by setting B = O(t ln |Σ|).

6,7,8.6.2 Exp[N2
∗ ] = O(t)|F|/|E|

This is the only place in the proof where we use the fact that underlying constraint graph
is a (n, d, λ)-expander. In fact, the only fact about expanders we will use is Lemma 6,7,8.11
which states that the probability that the (i+ 1)-st step of random walk whose first step is
in F is also in F is bounded above by |F |/|E|+ (λ/d)i.

Proof. Since N∗ ≤ NF , it suffices to bound Exp[N2
F ]. If we set Zi to be the random variable

that indicates if the i-th step of the random walk a = v0 → v1 → · · · → vl−1 → vl = b is in
F , we have the following expression for NF :

NF =
∞∑
i=1

Zi.

Exp[N2
F ] ≤ Exp

(∑
i=1∞

Zi

)2
 =

∞∑
i,j=1

Exp[ZiZj ]

=
∞∑

i,j=1

Pr[Zi = 1] · Pr[Zj = 1 | Zi = 1]

≤ 2
∞∑
i=1

Pr[Zi = 1]

 ∞∑
j=i

Pr[Zj = 1 | Zi = 1]


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The probability Pr[Zj = 1|Zi = 1] is precisely the probability that a random walk has its
(j − i)th edge in B conditioned on the fact that the first edge of the walk is in B. This
quantity is 1 if j = i and bounded above by (1− 1/t)j−i(|F |/|E|+ (λ/d)j−i−1). The latter
quantity is the product of the probability of the walk taking j − i + 1 more steps and the
quantity given by Lemma 6,7,8.11.

E[N2
F ] ≤2

∞∑
i=1

Pr[Zi = 1]

(
1 +

∞∑
r=1

(
1− 1

t

)r( |F |
|E|

+
(
λ

d

)r−1
))

≤2
∞∑
i=1

Pr[Zi = 1]

[
1 +
|F |
|E|

∞∑
r=1

(
1− 1

t

)r
+
∞∑
r=1

(
λ

d

)r−1
]

=2
∞∑
i=1

Pr[Zi = 1]
(

1 + t · |F |
|E|

+O(1)
)

Since λ < d

=O(1) ·
∞∑
i=1

Pr[Zi = 1] Since
|F |
|E|
≤ 1
t

=O(1) · Exp[NF ]

=O(1) · t |F |
|E|

This completes the proof of the two claims, thus completing phase II, the graph powering
phase.

6,7,8.7 Phase III: Alphabet Reduction

By the end of phase II, we have the following PCP transformation.

Corollary 6,7,8.13 (restated) (preprocessing+graph powering)

PCPΣ
1,1−ε[r, 2] ⊆ PCPΣ′

1,1−ε′ [r +O(t log t), 2]

where ε′ = Ω(t) ·min{δI · ε, 1
t } and Σ′ = Σ1+d+d2+···+dt

.
The gap has considerably improved from ε to O(t)ε (provided the initial gap ε < 1/t).

Thus, we could choose t to be sufficiently large such that the new gap is at least twice the
earlier gap and complete the proof of the gap amplification lemma 6,7,8.5. However, there
is one caveat: the alphabet Σ has increased exponentially in size to Σ′ ≈ Σdt

. How, do we
reduce the alphabet size? Proof Composition is tailor-made for this purpose. In fact, we
showed the following consequence of proof composition in the lecture on proof composition.

Lemma 6,7,8.19.

PCPΣ′
1,1−ε[r, 2] ⊆ PCPΣ

1,1−ε′ [r +O(log2 |Σ′|) + log2 17, 2]

where ε′ = δIIIε (for some constant δIII , and Σ is any alphabet such that log2 |Σ′| ≥ 17.
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Combining this with the corollary, we have that

PCPΣ
1,1−ε[r, 2] ⊆ PCPΣ′′

1,1−ε′′ [r + f(t), 2]

where

• ε′′ = Ω(t) · δIII min{δI · ε, 1
t }

• f(t) = O(t log t) + (1 + d+ d2 + · · ·+ dt)2 ·O(log2 |Σ|) + log2 17.

• Σ′′ is any alphabet such that log2 |Σ′| ≥ 17.

We can choose t to be a sufficiently large constant such that ε′′ = min{2ε, α} (for some
constant α). We can also choose the initial alphabet Σ to be Σ′′. We then have that

PCPΣ
1,1−ε[r, 2] ⊆ PCPΣ

1,1−ε′′ [r +O(1), 2]

where ε′′ is as described above. This completes the proof of the gap amplification lemma
and thus, the PCP Theorem.
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