
CMSC 39600 Nov 20, 2007

Problem Set 2

• Due Date: Dec 6 (Thurs), 2007

• It is recommended that you try to solve all problems, but it is sufficient if you submit
the writeup for any 5 problems.

• Collaboration is encouraged, but all writeups must be done individually.

• Indicate names of all collaborators.

Notation:

• F is a field of size q

• Sm
k is the set of affine subspaces of dimension k in Fm.

• Pm,d is the set of m-variate degree d polynomials

1. [Affine subspaces sample well]

Let A ⊂ Fm of density µ (i.e., |A| = µqm).

Vars∈Sm
k

[
|s ∩A|
|s|

]
≤ µ

q
.

Hence, conclude that

Pr
s∈Sm

k

[∣∣∣∣ |s ∩A|
|s|

− µ

∣∣∣∣ ≥ ε

]
≤ µ

ε2q
.

2. [Strategies for 2-Prover 1-Round Games]

Recall from lecture the definition of 2-prover 1-games. A game G is defined as follows:
There are two all powerful provers P1 and P2 and question sets Q1, Q2 and answer sets
A1, A2. A verifier draws inputs (q1, q2) from Q1 × Q2 according to some underlying
distribution Q known to both the provers. The verifiers sends query q1 to prover P1

and query q2 to Prover P2. The provers then return with answers a1 and a2. The
verifier then accepts iff V (q1, q2, a1, a2) = 1 where V is some Boolean predicate. There
are various strategies for the provers.

• Local Strategy: The provers strategies is given by two functions π1 : Q1 → A1

and π2 : Q2 → A2. The value of the game w(G) is then defined as follows:

w(G) = max
π1,π2

{
Pr

(q1,q2)∼QQ1×Q2

[V (q1, q2, π1(q1), π2(q2)) = 1]
}

,

where the maximum is taken over all local strategies (π1, π2).
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• Local Strategy with shared randomness: In this case the provers share a random
string r distributed according to some distribution R over some finite sized R.
The prover strategies are then π1 : Q1 × R → A1 and π2 : Q2 × R → A2. The
value of the game in this setting is given by

wrandom(G) = max
π1,π2

{
Pr

(q1,q2)∼QQ1×Q2,r∼RR
[V (q1, q2, π1(q1, r), π2(q2, r)) = 1]

}
,

where the maximum is over all local strategies with shared randomness (π1, π2).

(a) Prove that randomness does not help the provers. In other words, the value of
the game in both settings is identical (w(G) = wrandom(G) for all games G.

• Another type of prover strategies that is commonly studied is what is called
the “no-signaling strategies”. No-signaling strategies are not as stringent as the
above local strategies which require the prover’s computations to be dependent
only on their input and not on the other prover’s input. No-signally strategies
only imply that is there is no communication between two the two provers. More
formally, a pair of strategies π : Q1×Q2×R → A1 and π2 : Q1×Q2×R → A2 is
called no-signaling if for all q1, q2, q

′
1, q

′
2, the following distributions are identical

π1(q1, q2,R) is identical to π1(q1, q
′
2,R)

π2(q1, q2,R) is identical to π1(q′1, q2,R)

Note that the provers are allowed to share a random string r as before distributed
according to some distribution R. The main difference is that the prover’s an-
swers could depend on the both queries. The value of the no-signaling game
wns(G) is defined similarly as follows:

wns(G) = max
π1,π2

{
Pr

(q1,q2)∼QQ1×Q2,r∼RR
[V (q1, q2, π1(q1, q2, r), π2(q1, q2, r)) = 1]

}
,

where the maximum is over all no-signaling strategies (π1, π2).

(b) (trivial) Prove that w(G) ≤ wns(G)

(c) Consider the game in which the verifier draws a pair of random bits b1 and b2.
The verifier sends b1 to prover P1 and b2 to prover P2. The provers respond with
bits a1 and a2. The verifier accepts iff b1 ⊕ b2 = a1 ∧ a2. Calculate w(G) and
wns(G). Show that w(G) < 1 while wns(G) = 1.

It is known that the parallel repetition theorem is true for the no-signalling case too,
i.e., if wns(G) < 1, there exists a constant δ ∈ (0, 1) such that wns(G(k)) ≤ δk.

3. [Fourier interpretations]

Let f : {0, 1}n → R and write the Fourier expansion of f , f =
∑

S⊆[n] f̂(S)χS where
χS : {0, 1}n → {−1, 1} is defined as

χS(x) = (−1)
P

i∈S xi ,
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and f̂ : 2[n] → R is defined as follows:

f̂(S) = 〈f, χS〉 = E
[
f(x)(−1)

P
i∈S xi

]
.

All probabilities and expectations in this question are with respect to the uniform
product probability distribution on {0, 1}n.

(a) Given a set S ⊆ [n], define f≤S : {0, 1}n → R by

f≤S =
∑

T :T⊆S

f̂(T )χT .

Note that f≤S(x) actually only depends on the bits of x in S; call these bits xS .
Show that f≤S(xS) is equal to the expected value of f conditioned on the bits
xS (i.e., f≤S(xS) = Ey∈{0,1}n [f(y)|yS = xS ] (The expectation is thus over the
bits of x not in S.

(b) Suppose f ’s range is {−1, 1}; i.e., f is a Boolean-valued function. We define the
influence of the ith coordinate on f to be Infi(f) = Prx[f(x) 6= f(x(i))], where
x(i) denotes the string x with the ith bit flipped. This measures how sensitive f
is to flipping the ith coordinate. Show that

Infi(f) =
∑

S:i∈S

f̂(S)2.

(c) Again, suppose f is a Boolean-valued function. f is said to be monotone if
f(x) ≤ f(y) whenever x ≥ y. (By x ≥ y we mean xi ≥ yi for all i.) For example,
the AND function which is given AND(x, y) = 1 − 2xy is monotone. Similarly,
OR, and Majority are also monotone functions; Parity is not monotone.
Show that if f is monotone then Infi(f) = f̂({i}) for each i ∈ [n].

(d) Once more, suppose f is Boolean-valued. Suppose we pick x ∈ {0, 1}n at random
and then form a string y ∈ {0, 1}n as follows: for each i = 1 . . . n independently,
we set yi = xi with probability ρ and set yi to be a uniformly random bit with
probability 1− ρ. The noise stability of f at ρ is defined to be

Stabρ(f) = 2 Pr[f(x) = f(y)]− 1,

a number in the range [−1, 1]. This measures in some way how stable f is when
you flip about 1

2(1− ρ) input bits. Show that

Stabρ(f) =
∑

S⊆[n]

f̂(S)2ρ|S|.

4. [polynomial decoding]

(a) [Schwartz-Zippel Lemma] Given a non-zero polynomial p : Fm → F, prove
that

Pr
x

[p(x) = 0] ≤ d

q
.

[Hint: Use the fact that a non-zero univariate polynomial has at most d zeros.
Then, use induction to generalize to larger dimensions]
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(b) [short list of polynomials] Let A : Fm → F be any function (not necessarily
a low degree polynomial). Let p1, p2, . . . , pt : Fm → F be the list of all degree
d polynomials such that Prx[A(x) = pi(x)] ≥ δ. In other words, p1, . . . , pt is
the list of all polynomials that have each agreement at least δ with the function
A. Assume δ ≥ 2

√
d/q. Prove that t ≤ 2/δ. Hence, there are not too many

low-degree polynomials that have considerable agreement with two polynomials.
[Hint: Use the fact that two low degree polynomial agree on at most d/q fraction
of points (Schwartz-Zippel Lemma)]

5. [Interpolation from cliques of consistency graph]

In lecture, we defined the notion of a consistency graph G = (V,E), given a subspace
oracle A : Sk+1

k → Pk,d where V = Sm
k and E = {(s1, s2)|∀x ∈ s1 ∩ s2, A(s1)(x) =

A(s2)(x)}. Suppose there exists a clique W ⊂ V of size
(

2d+1
q

)
|V |, prove that there

exists a polynomial Q : Fm → F of degree 2d such that for eah w ∈ W , we have
Q|w ≡ A(w).

[Hint: Use the large size of W to show that there exists two sets of d parallel hyper-
planes (i.e, affine spaces of dimension k) in W . Interpolate along these hyperplanes
to obtain a degree 2d polynomial Q. Use Schwartz-Zippel repeatedly to argue that Q
identifies with A(s) for all hyperplanes s ∈ W ]

6. [Degree reduction]

In lecture, we showed that if the plane-point low-degree test passes with with non-
significant probability gamma, in other words

Pr
s∈Sm

k ,x∈s
[A(s)(x) = A(x)] ≥ γ,

then there exists a polynomial Q : Fm → F of degree at most 2d such that

Pr
x

[Q(x) = A(x)] ≥ γ2 − ε,

for some ε = mα(d/q)β. In this problem, we will show that the degree of the polyno-
mial Q can be reduced from 2d to d.

Suppose there exists a polynomial Q : Fm → F of degree δq for some 0 < δ < 1 and
furthermore,

Pr
s∈Sm

k

[Q|s ≡ A(s)] ≥ δ +
1
q
,

show that the degree of Q is in fact, at most d.

[Hint: Suppose by contradiction this is not the case (i.e., degree(Q) = D > d.
Consider any k dimensional affine subspace s = z0 + span{z1, z2, . . . , zk} for linearly
independent z1, . . . , zk. Any point in s is of the form z0 +

∑
αizi. Consider the

coefficient of αD
i in the polynomial P (α1, . . . , αk) = Q(z0 +

∑
αizi). Show using

Schwartz-Zippel Lemma that with high probability this coefficient is not zero. Hence,
with high probability Q|s is a degree D polynomial. Contradiction]
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7. [low degree testing to list of polynomials]

In lecture, we showed that if there is a list of low-degree polynomials that agrees with
the space oracle then low-degree test theorem is true. In this problem, we will show
the converse of this statement.

Suppose there exists a function f : (0, 1) → (0, 1) such that the following is true.

“[Low Degree Test Theorem] For every function A : Fm → F and A : Sm
k → Pm,d that

satisfies
Pr
s,x

[A(s)(x) = A(x)] ≥ γ,

we have
Pr
x

[A(x) = Q(x)] ≥ f(γ)

for some polynomial Q of degree at most d (end of Low Degree Test Theorem)”

(recall that we proved the above in lecture for the function f(γ) = γ2 − ε)

Let ε0 =
√

d/q and δ ∈ (ε0, 1). Set δ′ = f(δ−ε0)−ε0 ≥ 2ε0. Prove that for any function
B : Fm → F, there exists a list of at most t ≤ 2/δ′ polynomials Q1, . . . , Qt : Fm → F
of degree at most d such that

Pr
s∈Sm

k ,x∈s
[B(s)(x) 6= B(x) ∧ (∃i, Qi|s ≡ B(s))] ≥ 1− δ.

You may assume the result of Problem 2(b). We will prove the above statement as
follows. Suppose for contradiction that the statement if false.

Let Q1, Q2, . . . , Qt be the list of polynomials that have at least δ′ agreement with B.
By Problem 2(b), t ≤ 2/δ′. Suppose the statement was false. Consider the following
3 events for a random s ∈ Sm

k and x ∈ s.

• C : B(s)(x) = B(x)
• P : ∃i ∈ [t], B(x) = Qi(x)
• Q : ∃i ∈ [t], B(s) ≡ Qi|s

(a) Show that Pr[C ∧ S̄] > δ. S̄ denotes the event “not S”
(b) Argue using Schwartz-Zippel Lemma, Pr[C ∧ P̄ | 6 S] ≤ ε0.
(c) Conclude that Pr[C ∧ P̄ ] > δ − ε0.
(d) Construct a new oracle B′ : Fm → F as follows: let Q′ be an arbitrary polynomial

of degree exactly d + 1. Set B′(x) to be Q′(x) on all points x that satisfy P and
B(x) otherwise. Let the space oracle of B′ be the same as that of B. Show that

Pr
[
B′(s)(x) = B′(x)

]
> δ − ε0.

(e) Conclude from the low-degree test theorem that there exists a polynomial Q of
degree at most d such that Pr[Q′(x) = Q(x)] ≥ f(δ − ε0). Argue that Q and Q′

are distinct polynomials and hence,

Pr[B′(x) = Q(x) ∧B′(x) 6= B(x)] ≤ Pr[Q′(x) = Q(x)] ≤ d + 1
q

≤ ε0.
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(f) Argue that Pr[B(x) = Q(x) = B′(x)] ≥ f(δ − ε0)− ε0 = δ′.

(g) Conclude from above that there exists a i ∈ [t] such that Q ≡ Qi (i.e., Q and Qi

are identical polynomials)

(h) Conclude that δ′ ≤ Pr[B(x) = Qi(x) = B′(x)] ≤ Pr[Q′(x) = Q(x)] ≤ ε0, which
is a contradiction.
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