
Limits of Approximation Algorithms 28 Jan, 2010 (TIFR)

Lec. 2: Approximation Algorithms for NP-hard Problems (Part II)

Lecturer: Prahladh Harsha Scribe: S. Ajesh Babu

We will continue the survey of approximation algorithms in this lecture. First, we will
discuss a (1+ε)-approximation algorithm for Knapsack in time poly(n, 1/ε). We will then
see applications of some heavy hammers such as linear programming (LP) and semi-definite
programming (SDP) towards approximation algorithms. More specifically, we will see LP-
based approximation for MAXSAT and MAXCUT. In the following lecture, we will see a
SDP-based algorithm for MAXCUT.

The references for this lecture include Lecture 1 of the DIMACS tutorial on Limits
of approximation [HC09], Lectures 2, 3 and 4 of Sudan’s course on inapproximability at
MIT [Sud99], and Section 8 from Vazirani’s book on Approximation Algorithms [Vaz04].

2.1 Knapsack

The Knapsack problem is defined as follows.

Input: • n items, each item i ∈ [n] has weight wi ∈ Z≥0 and value vi ∈ Z≥0.
• A Knapsack with capacity c ∈ Z≥0.

Output: Find a subcollection of items S ⊆ [n] such that
∑

i∈S wi ≤ c.

Objective: Maximize the total value of the subcollection:
∑

i∈S vi

2.1.1 Greedy approach

The following is a natural greedy approach for this problem.

1 Sort the items by vi/wi (in non-increasing order). That is, arrange the items such
that vj/wj ≥ vj+1/wj+1.

2 Find the smallest k such that
∑

i≤k wi > c

3 Output S = {1, · · · , k − 1}

It can be shown that this algorithm performs arbitrarily bad wrt approximation. More
precisely, for every M , there is a Knapsack instance such that the the greedy output is
less than OPT/M . We can do slightly better if we replace the final step as follows.

3’ If vk >
∑k−1

i=1 vi then output {k} else output S

It can be shown that the above modification to the greedy approach yields a 2-approximation.

2-1

2.1.2 FPTAS for Knapsack

We will now show that we can get arbitrarily good approximations for Knapsack. More
precisely, we will show that for every ε > 0, there exists a (1 + ε)-approximation algorithm
for Knapsack running in time poly(n, 1/ε).

For this, we will first require the following claim which shows that Knapsack is opti-
mally solvable if we allow the algorithm to run in time poly(V) where V is the maximum
value, ie., maxi∈[n] vi instead of poly log V . Such algorithms which run in time polynomial
in the value of the input integers rather than polynomial in the bit-complexity of the input
integers are called pseudo-polynomial algorithms.

Claim 2.1.1. There is a pseudo-polynomial time algorithm OPT-Knapsack that solves
Knapsack optimally, i.e. in time poly(n, V) = O(n2V).

This claim tells us that if the value of the items are small enough (more precisely,
polynomially small), then the problem is optimally solvable. We will assume this claim for
now and show how using it, one can construct a (1 + ε)-approximation algorithm. The
main idea is that as we only want to obtain a (1 + ε)-approximation, we can round the
values vi to a smaller-sized set so that the new set of values is only polynomially large and
then apply OPT-Knapsack on it.

Let V = maxi∈[n] vi and K = εV/n.

(1 + ε) approximate algorithm for Knapsack

1 Construct v′i =
⌊

vi
εV/n

⌋
= bvi/Kc, ∀i ∈ [n]

2 Run OPT-Knapsack over the input {(v′i, wi), i = 1, . . . , n} to obtain set S

3 Output S

Analysis: Let O be the optimal sub-collection O ⊆ [n] for the original input {(vi, wi)}.
For any sub-collection A ⊆ [n], let val(A) =

∑
i∈A vi and val′(A) =

∑
i∈A v′i. We want to

compare OPT = val(O) with val(S). We know that Kv′i ≤ vi < Kv′i + K and V ≤ OPT .
Hence,

val(O)−Kval′(O) ≤ |O|K ≤ nK = εV ≤ εOPT

⇒ OPT −Kval′(O) ≤ εOPT

⇒ Kval′(O) ≥ (1− ε)OPT

S is an optimal set for the input {(v′i, wi)}. Therefore,

val(S) ≥ Kval′(S) ≥ Kval′(O) ≥ (1− ε)OPT.

Hence assuming the Claim 2.1.1, there is a (1 + ε)-approx algorithm that runs in time
poly(n, n/ε) = poly(n, 1/ε). Such an algorithm is called a fully polynomial time approxi-
mation scheme (FPTAS)

2-2

Definition 2.1.2 (FPTAS). A optimization problem Π is said to have fully polynomial
time approximation scheme (FPTAS) if there exists an algorithm A such that on input
instance I of Π and ε > 0, the algorithm A outputs a (1 + ε)- approximate solution in time
poly(|I|, 1/ε)

We conclude by proving Claim 2.1.1.

Pseudo polynomial algorithm for OPT-Knapsack: The claim is proved via dynamic
programming. Typically, all pseudo-polynomial algorithms are obtained via dynamic pro-
gramming. Define

fk,v = min
A⊆[k],val(A)≥v

(∑
i∈A

wi

)
.

The table of fk,v’s can be computed using the following recurrence by dynamic programming.

f1,v =

{
w1 v1 ≥ v

∞ otherwise
, ∀v ∈ {1, · · · , nV }

fk+1,v = min {fk,v, fk,v−vk + wk}

The optimal value is then obtained from the f ′k,vs using the formula

OPT = max{v|fn,v ≤ c}.

We have thus shown that

Theorem 2.1.3. Knapsack has an FPTAS.

2.2 Minimum Makespan

The Minimum-Makespan problem is defined as follows.

Input: • n jobs, each job j ∈ [n] takes time tj .

• m processessors.

Output: Find a partition of [n] into m sets (S1, · · · , Sm) so as to minimize the max time
on any processor that is minS1,··· ,Smmaxj

∑
i∈Sj

ti.

Like Knapsack, Minimum-Makespan has a (1 + ε)-approximate algorithm for every
ε > 0, however, unlike Knapsack this algorithm runs in time O(n1/ε). We will assume this
algorithm without proof (for details see [Vaz04, Section 10]).

Thus, even though we have very good approximation for Minimum-Makespan, the
dependence of the running time on ε is not polynomial. Such, approximation schemes are
called polynomial time approximation scheme (PTAS).

Definition 2.2.1 (PTAS). An optimization problem Π is said to have a polynomial time
approximations scheme (PTAS), if for every ε, there is an algorithm Aε that on input I
outputs an (1 + ε) approximate solution in time poly(|I|).

Note the order of quantifier, first ε and then Aε. Thus, the running time of algorithm
Aε can have arbitrary dependence on ε (eg., poly(n, 1/ε), npoly(1/ε), n21/ε etc). Clearly, if Π
has an FPTAS, then Π has a PTAS.

2-3

2.3 MAXSAT and MAXCUT

The first of the problems is MAXSAT.

Input: A set of m clauses on n boolean variables: c1, · · · , cm
eg: ci = (xi1 ∨ x̄i2 ∨ xi3)

Output: An assignment

Goal: Maximize number of clauses being satisfied

There exists a trivial 2-approximation: Try the all-true and all-false assignments. Every
clause is satisfied by at least one of them, thus, the best of the two satisifies at least half
the total number of clauses and thus gives a 2-approximation.

The second of the problems is MAXCUT (which is actually a special case of MAXSAT).

Input: Graph G = (V,E) undirected

Output: A cut(S, S̄), S ⊆ V

Goal: Maximize E(S, S̄) (the number of edges crossing the cut)

MAXCUT has an easy 2-approximation based on a greedy approach.

1. Put the first vertex in S

2. Iterate through the rest of the vertices and incrementally add them to one of S or S̄,
based on which of these options are currently better.

It is easy to see that this greedy approach ensures that at least half the edges are cut and
thus gives a 2-approximation.

2.3.1 Randomized Rounding

We will now demonstrate the randomized rounding technique taking the example of MAXSAT.
This will give us an alternate 2-approximation for MAXSAT.

The rounding procedure is as follows:

For each variable xi set it to true with probability
1

2
and false otherwise.

For any clause Cj , the probability that it is not satisifed is exactly 1/2kj , where kj is the
number of literals in Cj . Let Ij be the indicator variable such that

Ij =

{
1 if Cj is satisfied

0 otherwise.

Therefore, Pr [Ij = 1] = 1− 1/2kj . If C denoted the number of satisfied clauses, then C =∑m
j=1 Ij . We thus have E[C] =

∑m
j=1(1− 1/2kj) ≥ m/2. So in expection, we satisfy atleast

half the number of clauses. Observe that this is a randomized procedure and the above
analysis gives only a guarantee on the expected number of clauses. Both of these can be

2-4

overcome. We can repeat this randomized algorithm several times to get an assignment that
performs nearly as well as a random assignment. Furthermore, the randomzied algorithm
can be derandomized using the method of conditional expectations. But for the purposes
of this course, we will be satisifed with such randomized algorithms with guarantees only
on the expected value of the output.

The following observation of the above trivial randomized algorithm will come use-
ful. Note that the algorithm performs better for wider clauses. More precisely, if all the
clauses have atleast k literals, then E[C] ≥ m(1 − 1/2k) and we thus have a 1/(1 − 2−k)-
approximation algorithm.

2.4 Heavy hammers for approximation – Linear Program-
ming

We will now see how to use heavy hammers such as LP-solvers towards approximation
algorithms.

2.4.1 Linear Program (LP) and LP-solvers

Recall a linear program from Lecture 1.

Maximize CTx

subject to Ax ≤ b

where c ∈ Rn, b ∈ Rm and A ∈ Rm×n. By now, we now know that such linear programs can
be solved in polynomial time using either the interior points methods [Karmarkar ’84] or
the ellipsoid method [Khachiyan ’79]. More precisely, it is known that LPs can be solved in
time polynomial in n, m and l, where l = # bits required to represent the elements of A, b, c.
We will use these LP-solvers as black-boxes while designing approximation algorithms. In
other words, we will try to frame the given problem, rather a relaxation of the problem as
a LP, solve the LP and then perform some rounding to obtain an integral solution.

2.4.2 LP-based approximation algorithm for MAXSAT

We first restate MAXSAT as an Integer Program (IP) and relax it to an (LP),
IP for MAXSAT:

• For each variable xi we have a 0-1 variable zi.
zi is supposed to indicate if xi is true. i.e., zi = 1 iff xi = True

• For each clause Cj we have a 0-1 variable yj . yj is supposed to indicate if Cj is
satisfied. i.e., yj = 1 iff Cj is satisfied

• Constrants on yj and xi’s that check if yj is 1 iff one of the literals in Cj are true.
Instead of stating in generally, let us take a typical clause, say C2 = (x1 ∨ x2 ∨ x̄3).
It will be easy to see that this can be extended to all clauses. For C2, we will impose
the constraint E2 : y2 ≤ z1 + z2 + (1 − z3). This ensures that y2 is 1 iff one of z1, z2
or (1− z3) are 1.

2-5

Thus, the IP is as follows:

max
∑

yj

subject to constraint Ej , ∀j ∈ [m]

zi ∈ {0, 1},∀i ∈ [n]

yj ∈ {0, 1},∀j ∈ [m]

Notice that but for the last two 0-1 constraints all the other constraints are linear. We now
relax the last two constraints to be linear as follows.

max
∑

yj

subject to constraint Ej , ∀j ∈ [m]

zi ∈ [0, 1], ∀i ∈ [n]

yj ∈ [0, 1], ∀j ∈ [m]

Now that we have relaxed the original problem to a LP, we can solve it by running the
LP-solver to obtain the LP optimal solution OPTLP .

Observe that the solution space has only increased by this relaxation. Any feasible
integral solution to the original IP is a feasible solution to the LP. Hence, we call this
program, a LP relaxation of the original IP. Furthermore, since it is a relaxation the LP
optimal is at least the OPT (i.e., OPTLP ≥ OPT). However, the LP optimal need not be
an integral solution. In fact, this ratio between the LP optimal fractional solution and the
integral solution is called the integrality gap of the relaxation.

Integrality Gap = max
I:I is an instance

LP fractional solution

Integral solution
.

Recall that while designing an approximation algorithm, we compared the quality of the
algorithm against a easily computable upper bound on the actual optimum (lower bound
in case of minimization problems). The LP optimal is a natural candidate for such an
upper bound. In fact, in almost all LP-relaxation based approximation algorithms, we will
compare the quality of the algorithm against the true optimum by comparing it against the
LP optimum.

Rounding: Though we have solved the LP, we have not yet solved the original problem
or an approximation of it since the LP optimal may give a solution in which some xi, yj are
fractions and not 0-1 solutions. We need to design a rounding mechansim to obtain integral
solutions from this fractional solutions. There are two natural rounding algorithms.

Deterministic Rounding: For each variable xi, set xi to true if zi > 0.5 and false other-
wise.

Randomized Rounding: For each variable xi independently, set xi to true with proba-
bility zi and false with probability (1− zi).

We will use the latter rounding scheme for this problem. Let us now analyse the quality
of this rounding algorithm by comparing its expected output to the LP optimum.

2-6

Analysis: For ease of explanation, we will do the analysis only for monotone formulae,
that is the literals in each clause appear in their uncomplemented form. It will be easy
to see that this analysis extends to all formulae. Consider any such clause, say Cj =
zi1 ∨ zi1 ∨ · · · ∨ zikj with kj literals. The probability that Cj is not satisified is exactly∏kj

l=1(1− zil). Thus, the expected number of clauses satisified is as follows.

E [number of satisfied clauses] =

m∑
j=1

Pr [Cj is satisified]

=
m∑
j=1

1−
kj∏
l=1

(1− zil)


On the other hand, the LP optimum is

∑m
j=1 yj =

∑m
j=1 min

{∑kj
l=1 zil , 1

}
. We will com-

pare the rounded solution to the LP optimum by comparing each term in one summa-

tion against the corresponding term in the other summation, i.e., 1 −
∏kj

l=1(1 − zil) vs.

yj = min
{∑kj

l=1 zil , 1
}

. We would like to determine the worst possible ratio between

1−
kj∏
l=1

(1− zil) vs yj = min{1,
∑

zil}

The worst ratio is (i.e., the ratio is minimized) when all the zil are equal, i.e., zil = 1/k, in
which case the ratio is 1− (1− 1/k)k ≥ 1− e−1(See Appendix A for the detailed analysis).
Thus, the worst ratio between the expected number of clauses satisfied and the LP optimum
is at least 1− e−1. Thus, this gives us a 1/(1− e−1) ≈ 1.582-approximation algorithm.

Observe that the ratio of 1 − e−1 is attained only for very large k. For smaller k,
the ratio 1− (1/k)k is much better. Thus, in contrast to the vanilla rounding discussed in
Section 2.3.1, the LP-based aproximation performs well when the clauses are small. Thus, if
all the clauses are narrow it is better to perform the LP-based approximation while if all the
clauses are wide, it is better to perform the vanilla rounding algorithm. What about, when
we have clauses of both types? In the next section, we will see that the simple algorithm of
choosing the best of these two algorithms yields a 4/3≈ 1.333-approximation.

2.5 MAXSAT: Best of Vanilla Rounding and LP-based round-
ing

Conisder the algorithm which on a given MAXSAT, performs both the vanilla rounding
algorithm and the LP based rounding algorithm and chooses the better of the two. We can

2-7

analyse this algorithm as follows.

E[max (vanilla,LP-based)] ≥ 1

2
(E[vanilla] + E[LP-based])

≥
∑
j∈[m]

[
1

2

(
1− 1

2kj

)
+

1

2

(
1−

(
1− 1

kj

)kj
)
yj

]

≥
∑
j∈[m]

[
1

2

(
1− 1

2kj

)
yj +

1

2

(
1−

(
1− 1

kj

)kj
)
yj

]

≥
∑
j∈[m]

[
1− 1

2kj+1
− 1

2

(
1− 1

kj

)kj
]
yj

≥ 3

4

∑
yj =

3

4
OPTLP

The last inequality follows since 1 − 1

2kj+1 − 1
2

(
1− 1

kj

)kj
is equal to 3/4 for kj = 1, 2 and

strictly greater than 3/4 for all other kj . We thus have a 4/3-approximation for MAXSAT.
Such an approximation was first obtained by Yannakakis, but the above algorithm is due
to Goemans and Williamson.

References

[HC09] Prahladh Harsha and Moses Charikar. Limits of approximation algorithms: PCPs
and unique games, 2009. (DIMACS Tutorial, July 20-21, 2009). arXiv:1002.3864.

[Sud99] Madhu Sudan. 6.893: Approximability of optimization problems, 1999. (A course on
Approximability of Optimization Problems at MIT, Fall 1999).

[Vaz04] Vijay V. Vazirani. Approximation Algorithms. Springer, 2004.

A Appendix

We show that
1−

∏
(1−zil)

k

yj
≥ 1 −

(
1− 1

k

)k
where yj = min{1,

∑
zil}. The two cases to

consider are as follows.

2-8

http://dimacs.rutgers.edu/Workshops/Limits/
http://dimacs.rutgers.edu/Workshops/Limits/
http://arxiv.org/abs/1002.3864
http://people.csail.mit.edu/madhu/FT99/course.html

• Suppose yj = 1: Therefore,∑
zil ≥ 1∑
zil
k
≥ 1

k

⇒
(

1−
∑

zil
k

)k

≤
(

1− 1

k

)k

⇒ 1−
(

1−
∑

zil
k

)k

≥ 1−
(

1− 1

k

)k

⇒ 1−
(∑

(1− zil)

k

)k

≥ 1−
(

1− 1

k

)k

⇒ 1−
∏

(1− zil)
k ≥ 1−

(
1− 1

k

)k
(

using AM-GM inequality i.e.
∏

ai ≤
(∑

ai
k

)k
)
.

• Suppose yj =
∑

zil : Therefore,
∑

zil < 1. The function f(x) = 1−
(
1− x

k

)k
is concave

in the range 0 ≤ x ≤ 1 (reason: f
′′
(x) = −k−1

k

(
1− x

k

)k−2
is negative in this range).

The line x
(

1−
(
1− 1

k

)k)
has the same value as f(x) at x = 0 and x = 1 (i.e it is a se-

cant line). Hence, by definition of concave functions, 1−
(
1− x

k

)k ≥ x
(

1−
(
1− 1

k

)k)
.

Setting x =
∑

zil and we get 1 −
(

1−
∑

zil
k

)k
≥ (
∑

zil)
(

1−
(
1− 1

k

)k)
. Applying

the AM-GM inequality, we get
1−

∏
(1−zil)

k∑
zil

≥
(

1−
(
1− 1

k

)k)
.

2-9

	Knapsack
	Greedy approach
	FPTAS for Knapsack

	Minimum Makespan
	MAXSAT and MAXCUT
	Randomized Rounding

	Heavy hammers for approximation – Linear Programming
	Linear Program (LP) and LP-solvers
	LP-based approximation algorithm for MAXSAT

	MAXSAT: Best of Vanilla Rounding and LP-based rounding
	Appendix

