Limits of Approximation Algorithms 1 April, 2010 (TIFR)

Lec. 9: PCPs Constructions via low degree polynomials

Lecturer: Prahladh Harsha Scribe: Srikanth Srintvasan

In today’s lecture !, we will see how we can use the results on low-degree testing (which
we discussed in detail in the earlier lectures) to construct PCPs. Towards this end, we
will first show how local checkers for low-degreeness can be extended to check if a given
function is a low-degree polynomial that vanishes on a pre-specified subcube. We will then
“arithmetize” the NP-complete problem 3SAT in such a manner that the above checker
yields a 2-query projective PCP.

9.1 Recap of the Low degree test

In the last lecture, we considered the low-degree Plane-point test for low degree polynomials
over a finite field F. We were given a function f : F" — [that we called a “points oracle”
and we wished to check if f was a polynomial of degree at most d by only querying f at
a few points. To make this task easier, we were also given a “planes oracle” A that gives,
for each plane in F™, a bivariate polynomial of degree at most d that is purportedly the
restriction of f to the plane. The test that we performed was simple:

e Pick a plane s at random and a point x at random from it.

e Query the planes oracle A for the polynomial A(s) and the points oracle for the value

f ().
o Accept iff A(s)(x) = f(x).
In the last lecture, we proved the following for the above plane-point test.

Theorem 9.1.1 (low degree test — standard formulation). Let F be a field of size q. Let
m,d € Z=° and § € (0,1) such that § > poly(d/q,m). Given any function f : F™ — F, if
there exists a planes oracle A satsisfying

PriA(s)(z) = f(z)] = 7,

then there exists a degree d m-variate polynomial Q (i.e., Q € PJ* 2) such that
Pr [f(x) = Q)] 2 7y — &

Or equivalently,
agr(f, PJ') > Elagr(f]., P)]

!Prahladh: These notes are far more detailed than the lecture it corresponds to. Thanks to the scribe
Srikanth for filling in all the missing details in the lecture.
2Recall that PJ" refers to the set of all m-variate degree polynomials of degree at most d.

9-1

Above, the agreement agr(f,g) between f,g : F™ — F is defined to be the fraction of
points in the domain where they agree and agr(f, S) refers to max,cgs agr(f, g).

We also showed that the above statement is equivalent to the following list-decoding
formulation.

Theorem 9.1.2 (low degree test — list decoding formulation). Let F be a field of size q.
Let m,d € Z=° and 6 € (0,1) such that 6 > poly(d/q,m). For any function f : F™ — F
there exists a list of polynomials Q1,Q2,...,Q: of degree at most d where t = O(%) such
that the following holds for any (even randomized) planes oracle A,

PriA(s)(@) # f(z) v Fi€ft], Qils = Als)] =1 -0,

Finally, we state the version we will use. This is an extension of the above low-degree
test from functions of the form f :F™ — F to f : F™ — F* for some k € Z=°. That is, the
points oracle is now a function f : F” — F*¥ and we need to verify that each coordinate of
f is a polynomial of degree at most d. In this case, given a plane s, we expect the planes
oracle A to supply us with a k-tuple of polynomials of degree at most d. Finally, the planes

oracle is also allowed to be randomized. The plane-point test remains exactly the same:

e Pick a plane s at random and a point x at random from it.

e Query the planes oracle A for the k-tuple of polynomials A(s) and the points oracle
for the value f(x).

e Accept iff A(s)(x) = f(x).

It is easy to see the analysis for the case k = 1 also works for arbitrary k. We thus have the
following theorem which we refer to as the high dimensional version of the low-degree test.

Theorem 9.1.3 (high dimensional LDT). Let F be a field of size q. Let m,d,k € Z=° and
§ € (0,1) such that & > poly(d/q,m). For any function f : F™ — F* there ewists a list
of k-tuples of polynomials Qq,Qs,...,Q, of degree at most d where t = O(%) such that the
following holds for any (even randomized) planes oracle A,

Pr [A(s)(@) £ F(a) v Fi €l Qlo=A(s)] 210

9.2 Label Cover and Robust PCPs

Now we come to the main focus of this lecture: constructing PCPs using Low degree tests.
Recall two equivalent formulations of the PCP theorem. The first posits the existence of
a PCP system with some nice properties, and the second states that a gap version of an
optimization problem is NP-hard.

e Formulation 1: There exist r = O(logn), 6 > 0, and ¢ = O(1) such that there is a

polynomial-time verifier V' that on input a CNF formula ¢ of size n and a proof 7 of
size m = poly(n), does the following:

9-2

— Looking at the input and the outcomes of » many random bits, V' produces a

collection of indices I = {i1,42,...,%q} C [m] and a predicate C' : {0,1}9 —
{0,1}.
— V then examines 7 at locations 41,19, ...,4; and accepts iff C'(n7) = 1.

Furthermore, V satisfies the following;:

— Completeness: If ¢ is satisfiable, then there is a proof 7 such that Pr, [C(7) = 1] =

1.

— Soundness: If ¢ is unsatisfiable, then for any proof m, it is the case that
Pr, [C(mr) = 1] <1 -4, for some fixed constant § > 0.

e Formulation 2: We state this formulation in terms of the 2-query projective PCPs,
which are more popularly called Label Cover problem. Recall the definition of this
problem:

Definition 9.2.1 (LABEL-COVER). An instance I of the LABEL-COVER problem is
specified by a quadruple (G, %1, X9, I1) where G = (L, R, F) is a bipartite graph, ¥, and
Yo are two finite sized alphabets and 11 = {7, : X1 — Yale € E}, is a set of functions
(also called projections), one for each edge (u,v) € E.

A labeling A: L — ¥1, B : R — X, is said to satisfy an edge (u,v) iff m,) (A(u)) =
B(v). The value of an instance is the mazimal fraction of edges satisfied by any such
labeling.

For any ¢ € (0,1), the gap problem GAP.-LC is the promise problem of deciding if a
given instance has value 1 or at most €. More precisely, the YES and NO of GAp.-L.C
are given as follows.

YES = {I:3(A:L— X1, B: R— %) such that V(u,v) € E, 7, (A(u)) = B(v)}
NO = {I:V(A:L— 3%, B:R—3%), |{(u,v) € E: 7y, (A(u) = B(v)}| <elE[}

Now, we can state the second formulation of the PCP theorem: SAT reduces in
polynomial time to GAP_s-LC, for some fixed constant ¢ > 0.

Let us see how these two formulations are equivalent (in lecture 5, we showed the first
implies the second, but we will go over it again more carefully this time).

Assuming that SAT reduces to GAP;_s-LC for some fixed § > 0, we can construct a
verifier V' as above who, on input a CNF formula ¢, computes the instance G of Gap;_5-LC
that ¢ reduces to. The verifier expects, as a proof, a labeling to the right vertices R of G
that can be extended to a labeling of all of G that satisfies all the edges of G. Given a
labeling of R, the verifier picks a random left vertex u € L, queries the proof for the labels
of the neighbourhood of u, and accepts if u can be labelled in any way so that all these
edges can be satisfied. Note that the number of random coins used by V' is O(log |¢|) and
the number of queries is g, the constant left-degree of G. Moreover, if there is a labeling
of the graph G that satisfies all the edges, then the restriction of this labeling to R makes
V accept with probability 1. On the other hand, if the verifier accepts with probability p,

9-3

then there is a labelling of G that satisfies at least a p fraction of the edges; hence, if G is
a negative instance of GAP;_5-L.C, then V accepts with probability at most 1 — §.

Now for the reduction in the other direction: if there is a verifier V with the above
mentioned properties and soundness error at most 1 — §, then we construct a gap-LC
instance G as follows: for each setting R of the random coins of the verifier, we add a left
vertex up to L, and for each location i of the proof, we add a right vertex v; to R. There
is an edge between ur and wv; iff the ith location of the proof is queried when the random
coins take value R. Assume that when the random coins take value R the verifier queries
locations 41,12, .. .,144; the labeling for ug is an assignment to these locations in the proof
that satisfies the predicate C'r of the verifier on these random bits. The assignment to v; is
expected to be the ith bit of the proof. The label cover instance expects the assignments to
the left vertices to be “induced” from the proof on the right: that is, for each edge (ug, v;),
we have a constraint that forces a fixed label for v; depending on the label of ugr. The
completeness condition is easy to see. For the soundness, consider the proof given by the
labeling of the vertices in R. Since the verifier accepts this proof with probability at most
1 — 4, we see that for at least a § fraction of the vertices in L must be inconsistent with
their neighbours on the right. Hence, for each such vertex u, there is at least one edge e
incident to it that is not satisfied. Since the degree of each left vertex is ¢, this implies that
any labeling of the vertices of G satisfies at most a 1 — d/q fraction of edges. Thus, G is an
instance of GAPy_;,,-LC.

The above arguments show that, in the regime where ¢ is close to 0 (and for small ¢q),
the two formulations are just about equivalent. However, when § is close to 1, that is, when
the soundness error is close to 0, then the equivalence is lost since a verifier with soundness
error 1 — ¢ (which is close to 0) translates to an instance of GAP;_;/,-L.C, which is at least
1—1/q. Since we will be interested in the low soundness error regime, this suggests that we
need a slightly different notion of a PCP system that is equivalent to GAPs-LC for small §
also.

For this reason, we introduce the notion of a robust PCP, a prover-verifier system where
the verifier behaves exactly as above except for a more stringent soundess condition.

— (Robust) Soundness: E.[agr(r;, SAT(C))] < 0, where SAT(C) is the set of sat-
isfying assignments to the predicate C. We will refer to ¢ as the (robust) soundness
error of the PCP.

Note that the above is a stronger requirement that the above (robust) soundness con-
dition, where the predicate C' is satisfied with probability at most 4.
The point of defining a robust PCP is the following.

Lemma 9.2.2. The following statements are equivalent, for any § > 0:
e There is a robust PCP for SAT with (robust) soundness error at most §.
o SAT polynomial-time reduces to GAPs-LC.

The above statement can be proved by following exactly the reductions stated above.
The above equivalence theorem is due to Dinur and Harsha [DH09]. Our aim, in this lecture,
will be to prove the existence of robust PCPs with soundness error ¢ (or equivalently, the
NP-hardness of GAPs-LC) for an arbitrary small constant § > 0.

9-4

9.3 Robust PCPs from Low Degree Tests

We now start proving the existence of Robust PCPs for SAT. The basic idea is to encode a
satisfying assignment x of a SAT formula ¢ in a manner such that it can be locally checked
by a polynomial-time verifier. Recall that the low degree test shows that the property of
being a low-degree polynomial over a sufficiently large field can be locally checked. We will
use this crucially in designing the locally checkable encodings of satisfying assignments.

To see how low-degree polynomials along with the associated low-degree test might yield
a PCP, let us see that there is a robust PCP for checking if a given function f : F™ — F
is (close to) a polynomial of small degree d. This falls right out of the plane-point test
described above. The verifier picks a plane at random, reads off the function f restricted
to this plane and accepts iff this is a low-degree polynomial. Let us see that this yields
a robust PCP. Completeness is trivial. To prove robust soundness, consider an associated
planes oracle A such that for any plane s, A(s) is the polynomial of degree at most d that
has the maximum agreement with the function obtained when f is restricted to s (the planes
oracle represents the closest “satisfying assignments” for each question of the verifier). It is
easy to see, from the analysis of the plane-point test mentioned above, that if the polynomial
fis “far” (say (1—1/q—e)-far) from every polynomial of degree at most d, then the robust
soundness error of the verifier — which is exactly the quantity Prs, [A(s)(z) = f(x)] — is
bounded by § for § close to 0. What we now plan to do in the rest of the lecture is to
replace “low-degree polynomials” by “satisfying assignments of a SAT formula ¢” in this
entire paragraph, and we would then have a robust PCP for SAT.

We now proceed to the construction of the PCP. We start by introducing the Zero on
subcube test, which is an extension of the property of being a low-degree polynomial that
we will use later.

9.3.1 Zero on subcube test

Let H CF. Given d € N, we say that a function f : F" — F satisfies the Zero on subcube
property if: (a) f is a polynomial of degree at most d, and (b) f is identically 0 on H™.

We would like to design a local checker for the above property, similar to the plane-
point test for degree d polynomials. That is, we would like our test to have the following
property: accept any function that satisfies the above property with probability 1, and not
accept any function with non-trivial probability unless it has some noticeable correlation
with a function that satisfies this property.

A natural test that comes to mind is the following: Test if f is a low-degree polynomial
using the plane-point test, and then check if f is 0 at a random point of H™. But this test
is flawed since it only tests if f is close to some low-degree polynomial f’ and to a function
f"” — not necessarily f’ — that vanishes over all of H™. However, it fails to check if f has
correlation with some function that has both these properties. Hence, a different approach
is necessary.

In what follows, we will need the following lemma, which gives an algebraic character-
ization of polynomials that vanish over H™. Let gy (z) denote the univariate polynomial

[hen(z —h).

Lemma 9.3.1. A polynomial f of degree at most d is identically 0 over H™ iff there exist
polynomials Py, Py, . .., Py, of degree at most d such that f(x) = Zle g (z) Pi(x1, 22, ..., Tm).

Proof. 1t is easy to see that if there exist polynomials Py, Ps, ..., P, with the above prop-
erties, then f does indeed vanish over all of H™. To prove the converse, we proceed as
follows.

We define sequences of polynomials P, ..., Py, Ro, R1,Ra, ..., Ry € Flxy,x9,...,2n]
as follows: Ry is simply the polynomial f and for i > 1, we divide R;_1 by gg(x;) and set P;
to be the quotient and R; to be the remainder; more formally, we write R;—1 = g (z;)Pi+R;
in the unique way so that the degree of x; in R; is less than |H|. Note that the degree of
P; is at most d.

By the definition of the polynomials above, we have f =", g (z;) P + Ry, where Ry,
is a polynomial of degree at most |H| — 1 in each z;. Note that since f and gy (x;) (for
each i € [m]) vanish over H™, so does R,,. Hence, R, must in fact be the zero polynomial.
This shows that f =), g (z;)P;, which proves the lemma. O

Now we design the Zero on subcube test as follows. The test is identical to the high-
dimensional version of the plane-point test. To prove that f : F™ — F is a polynomial
of degree at most d that vanishes over H™, we expect the prover to provide us with the
polynomials Py, Ps, ..., P, mentioned in Lemma 9.3.1 and prove that f, P;,..., P, are
low-degree polynomials.

More formally, as in the low-degree test, we expect a planes oracle A such that for each
plane s, A(s) is an (m+ 1)-tuple (po, p1, P2, - - - , Pm) of polynomials of degree at most d such
that po = >, g (zs)p;. We also expect a points oracle that is an (m + 1)-tuple of functions
f=(fo=1f fi,--., fm) from F™ to F. The test itself is exactly the same as the plane-point
test.

The Zero on subcube test:

e Pick a plane s uniformly at random and a random point x from it.
e Query the planes oracle for A(s) and the points oracle for f(z).
e Accept iff A(s)(z) = f(z).

Since the above test is just the plane-point test applied to a planes oracle and points
oracle, we know that for any 6 > poly(m,d/q), there exists a short list of (m + 1)-tuples of
polynomials Q10, Q®, ..., QW — with Q0 = (QV,..., Q%)) and t = O(1/8) — of degree
at most d such that

Egl; A(s)(z) # flx) vV Fie[t] QW|s=A(s)| >1—6 (9.3.1)

However, this is not sufficient for our purposes, since the above does not state that the

&lynomials Q((]i) are identically zero on the subcube H™. Let us call Q) for i € [t] good if

Q(()i) is indeed identically zero in H™ and bad otherwise. In particular, for any bad Q(®), we

must have
m

O£ gule)Q? (9.3.2)
J

1

9-6

In fact, we will extend the definition of “good” as follows: the (m + 1)-tuple Q) is good if
it satisfies (9.3.2) and bad otherwise.
Consider the new list of tupless obtained by throwing away all but the good tuples. We
would like to say that Inequality 9.3.1, or some approximation of it, continues to hold.
Note that if this were not to be the case, then it must be true that the bad Q¥ must agree
on many planes with the planes oracle A(s). However, for any s, if A(s) = (po, p1,--->Pm),

then we know that po = >, gm(;)p;. This implies that for many planes s, the bad Q)
satisfy the analogue of Equation 9.3.2 on the plane s. But a simple application of the
Schwartz-Zippel lemma shows that this is not possible.

Let us state the above formally. Fix any bad Q(?). For a plane s, let (€s,0: 95,15+ -+ > qs,m)

be the restriction of Q() to the plane s. An application of the Schwartz-Zippel lemma shows
that for a random choice of plane s,

d+ |H]

Pr qs,ozng(xj)qs,j <

J

However, if the above event does not occur, then the restriction of Q() to the plane s cannot
agree with A(s).
Let ¢ denote (d + |H|)/q. The above shows that:

Pr|A(s)(z) # f(z) V Fist QW good and QU)|, = A(s)| >1—6—te (9.3.3)
This concludes the proof of correctness of the Zero on subcube test.

9.3.2 Arithmetization

We now turn to the actual construction of the PCP: how one can encode a satisfying
assignment of a SAT formula ¢ using a low-degree polynomial so that it is locally checkable.
This process is known as arithmetization. Roughly, we will proceed as follows. We will first
show how to encode any assignment to the variables of a formula as a low degree polynomial
f so that f evaluates to zero on a predetermined subcube H™ iff f was obtained from a
satisfying assignment of . We can then use the Zero on subcube test above to show that
this can be locally checked. However, this entire procedure only works for polynomials
constructed from satisfying assignments in the way described above. To ensure that the
prover hasn’t cheated and given us other polynomials, we will demand more structure of the
planes oracle — ultimately, this will lead us to modify the low degree test in a fundamental
way. The arithmetization presented in this section is from lecture 18 of Sudan’s course on
inapproximability at MIT [Sud99].

Fix a 3-CNF formula ¢ over n variables. Let F be a field of size ¢ (ultimately, ¢ will
be polylogn). Fix any subset H of F such that H contains {0, 1} and there is an integer
m such that |H|™ = n; we will identify [n] with H™. Consider a Boolean assignment
A :[n] — {0,1} to the variables of ¢. We will think of A as a function mapping H™ to F.
Using standard interpolation techniques, it is easy to prove that there is a polynomial A of
degree O(m|H|) that agrees with A when evaluated on inputs from H™. This defines the
polynomial representation of the assignment A that we will work with.

9-7

Similarly, we will also need a polynomial representation of the formula ¢. For each
possible clause of 3 variables, the polynomial encodes whether the clause belongs to ¢ or
not. We think of the formula ¢ as a function mapping [n]? x {0,1}3 to {0,1} as follows:

i, k, b, b, b) — { 1 if xfl \Y x;’? Y x%” is a clause in ¢.

0 otherwise.

where x? and mll represent the negative and positive instances of z; respectively. Since we
have identified H™ with [n] and H contains {0,1}, we can think of ¢ as a function from
H3mF3 to F (define ¢ to be 0 outside the points mentioned above). As in the case of the
assignment, we can define a polynomial ¢ over 3m + 3 variables of degree O(m|H]|) that
agrees with ¢ on H?™,

Given the polynomials ¢ and A defined above, we are ready to define the polynomial
on which a zero on subcube test will tell us if A is a satisfying assignment or not. This
polynomial, defined on 3m 4 3 variables, is denoted p, 4 and is defined below. We think of
the input to p, 4 as three tuples i, j, k from F™ followed by three field elements by, b, b3.

P (i, 7, K, br, ba, b3) = @(i, 4, k, by, b, b3) (A(i) — b1)(A(5) — ba)(A(k) — bs)

Clearly, p,, 4 is a polynomial of degree O(m|H|). We claim that moreover, p, 4 vanishes
over the subcube H3"+3 iff A is a satisfying assignment for the formula . To see this,
assume that p, 4 is evaluated on input (7,7, k, b1, ba,b3) € H3m 3, Unless by, b, by lie in
{0,1} and the clause xl-’l v xb.2 Y, xb3 is a clause in ¢, the polynomial gé(i i, k, bl,bg,bg)
evaluates to 0 and hence so does Py, A- On the other hand, when the clause 95 \/:c \% xk is

in ¢, then it is easy to see that p, 4 evaluates to 0 iff A(i) = by or A(j) = by or A(k) = b3,
which happens exactly when A satisfies this clause of . We have proved the following.

Lemma 9.3.2. Let A be _any polynomial defined on m variables. Assume the polynomial
Pp,A 18 constructed from A as above. Then, Dep,A 18 identically zero on H3m+3 4 A | grm is
a satisfying assignment for the formula .

Hence, it seems that it is enough for the prover to supply us with enough proof for to
be able to verify that the polynomial p, 4, for some satisfying assignment A, vanishes over
H3m+3_ Recall that to do this, the prover needs to supply us with 3m + 3 polynomials
Py, Py, ..., P33 of degree O(m|H|) such that p, 4 =) . gu(x;)P; and prove to us that
they are low degree.

The entire proof is now the following:

e The points oracle: A collection of functions f : F3*3 — F3m+4 In the ideal proof, the

prover would ensure that f = (fo,..., fam+3) where fo = py A, fi = Pi,..., famis =
P33,
e The planes oracle: For each plane s, a (3m+4)-tuple of polynomials (pg, p1, .. -, D3m+3)

of degree O(m|H|[) such that po = 3 ;3,13 9m(xi)p;. Ideally, these would just be
the restrictions of the functions in the points oracle to this plane.

However, this is not enough: the prover must also prove that the polynomial fy he
supplies in place of p, 4 was indeed constructed from some assignment A in the manner

9-8

described above. More precisely, he needs to show that there is a polynomial A such that
fo is constructed from A as above.

To do this, he also supplies the polynomial A along with the points oracle and proves,
using an additional coordinate in the planes oracle, that this is indeed a low-degree polyno-
mial. Note that there is a slight type-mismatch here: A is a polynomial over m variables,
whereas all the other polynomials we have been working with are polynomials over 3m + 3
variables. To get around this, we work with an extended version A that applies A to the
first m variables among the 3m + 3 variables in its input. That is,

Z(l’l,l’g, ey :L‘3m+3) = A(l‘l, Ty v ,ZEm)

(There is a slight problem here: how do we know that the polynomial A the prover has
supplied depends only on the first m variables? We will need to get around this in what
follows, but we will ignore the problem for now.)

We need to check that the following identity holds:

foli, g, K, b1, ba, b3) = @i, 4, k, br, b, b3) (A(7) — b) (A(5) — ba) (A(k) — b3)
= @(i, J, k, br, ba, b3) (A(x1) — b1) (A(w2) — ba)(A(x3) — b3)

where z1 is some point in F3™*3 that contains 7 in its first m coordinates, and similarly

x9 and x3 contain j and k respectively in their first m coordinates.

We will proceed as in the case of the zero on subcube test, where instead of actually
checking that an identity held, we forced the planes oracle to only supply us with tuples of
polynomials that satisfied the identity. We would like the planes oracle to always satisfy
the above identity on each plane, but the problem with ensuring this is that most planes
do not contain three points of the form on which A is evaluated. Hence, we have no way of
restricting the planes oracle to only such polynomials, as long as we insist on continuing to
use planes.

The answer, as we will see in the next few subsections, is to use a slightly larger object
instead of planes in the low-degree test on which the above identity can indeed be verified.
More precisely, define p : F3+3 — F3m+3 £ be the linear map such that p(i, j, k, by, ba, b3) =
(k,i,7,b1,b2,b3). This larger object will contain, for some 2 € F3™*3 the points x, p(x),
and p%(z). We will then check that:

fo(x) = ¢(2)(A(x) = 23m+1) (Alp(2)) = 23m+2)(A(p*(2)) = T3m+3) (9.3.4)

The larger object will also help us verify that the polynomial A does indeed depend on
the first m variables only. In the next subsection, we will show that this version of the
low-degree test can also be proved to work in the same sense as the plane-point test, for
a rather general notion of “object”: the proof proceeds by simply reducing the analysis of
this test to that of the plane-point test. After that, we will formally define the objects we
will work with, and show that they are sufficient to construct the PCP.

It is to be noted that the way we have circumvented the above problems in these notes
is not the only one: a clever folding argument can also be used to circumvent the problem
of checking the identity mentioned in Equation 9.3.4.

9.3.3 The Object-point test

As mentioned above, we now need to modify the low-degree test to work over more com-
plicated objects than just planes. Without going into details right now about what exactly
our object will be, we prove that the object-point low-degree test will work just as the
plane-point test does, under a rather general definition of “object”.

Each of our objects will be associated with some constant-dimensional (dimension less
than or equal to about 7 will do) subspace from F™. For now, let us think of the object as
just the subspace associated with it.

Let D; be the distribution over tuples (€2, s) of objects and planes induced by picking
an object at random and then picking a random plane s contained in it. Let Dy be the
distribution over pairs (€2, s) induced by picking a plane s at random and then picking a
random () containing s. For n > 0, we say that our collection of objects is n-good if the
statistical distance between D; and Dy is at most 7.

Say our collection of objects is n-good for some n > 0. Fix any “objects oracle” A
(possibly randomized) that, when given an object , outputs k polynomials of degree d.
Also fix a points oracle f : F — F*. The object-point test is defined as follows:

e Pick a random object 2 and a random z € €.
e Query the objects oracle for A(£) and the points oracle for f(z).

e Accept iff A(Q)(z) = f(z).

We wish to prove that an analogue of Theorem 9.1.3 holds for the above test. We can
prove this by simply reducing to the plane-point test. Consider a randomized planes A
oracle defined as follows: Given a plane s, A queries A(Q) where Q is a random object
containing the plane s and outputs the restriction of A(Q2) to the plane s.

Fix § > poly(m,d/q). By Theorem 9.1.3, there is a short list of t = O(1/9) degree-d
polynomial maps Q1, Qa, . .., Q; such that

Pr [A(s)(@) = F(a) v 3 Qils = As)| 210

A,s,x

For i € {1,2}, we use (€2, s); to denote a pair (€2, s) picked according to distribution D;.
The above implies that

zv(f];i)z,x M(Q)(l') - f(:C) v Ji @z|s =](S)] 2 1—-9

Since our objects are n-good, we have:

& AO@=T@)Y 3@ = A 2151

We almost have the analogue of Theorem 9.1.3 in the case of the object-point test. The
only difference is that above we get the agreement of @); with A(£2) on a random plane s
chosen from (2 instead of over the entire object. However, by a standard Schwartz-Zippel

9-10

argument, this implies that most of the time, we must get agreement over the entire object.
Formally, for any ¢ and €2 and a random s picked from €2, we have:

d

br [Qile 2 AQ) A Qils = AQ)]s] < 7 S€

Hence, by a union bound over ¢, we have:

~ Pr M(Q)(x):?(x)\/ 3 @Z|QEA(Q)] >1—-6—n—te
A, (2,8)1,z
We have proved the following, for any collection of 7-good objects. (We have absorbed
the te term in the §.)

Theorem 9.3.3. Fiz any points oracle f:F™ S Tk Given any 6 > poly(m,d/q) and any
objects oracle A, there exists a list of k-tuples of polynomials Q,Q, ..., QO() of degree at
most d such that

ZPer [AQ)(z) # f(z) V Fi€[t] s.t. Qila=ARQ)] >1-6—n

1
s

We leave it to the reader to check that the zero on subcube test works in exactly the
same way for 7-good objects as it does for planes (in fact, all we need is that a random
point in an object looks like a random point from the entire space).

9.3.4 Defining our objects and completing the construction of the PCP

Our objects will essentially be constant-dimensional subspaces in F”*. They will contain
points of the form z,p(2), p%(z) so that the identity in Equation 9.3.4 can be checked.
Moreover, to check that the polynomial A depends only on the first m variables, we will
ensure that the object contains points z, 2’ that agree on the first m coordinates.

To pick an object at random, we pick y,y’,2 € F™ independently and uniformly at
random. Moreover, we also pick z/ € F™ such that the first m coordinates of 2z’ are the
same as the first m coordinates of z and the remaining coordinates of 2’ are chosen inde-
pendently and uniformly at random from F. The object € that we have picked is formally
just the tuple (y,v/, z,2’); we associate with the subspace L(2) spanned by the vectors
2,7, p(2), p?(2),y, and 3. Note that the same subspace may be associated with different
tuples and hence with different objects.

To prove that the object point test has the nice properties proved in the previous sub-
section, we need to show that our objects are well-behaved: that is, they are n-good for
some small n > 0. We state this as a claim here, and postpone the simple but rather ugly
details to the appendix.

Claim 9.3.4. The objects Q as defined above are O(1/q)-good.

The PCP we construct is based on the zero-on-subcube test for objects. As in the case
of planes, the proof consists of the following:

e The points oracle: A collection of functions f : F3+3 — F3™m+5 In the ideal proof,
the prover would ensure that f = (f_1, fo, ..., fam+3) Where f_1 = A, fo = py.a, f1 =
Py, fam+3 = Pamas.

9-11

e The objects oracle: For each object Q = (y,v/, z,2’), a (3m + 5)-tuple of polynomials
(p—1,D0,P15- - -, P3m+3) of degree O(m|H]|) defined on (the subspace given by) such
that

— po(z) = Zl§i§3m+3 g (z;)pi(x) for each z € L(Q).

— p_1(2) = p_1(#'). This helps us check that A depends only on the first m
variables.

= po(2) = ¢(2)(-1(2) = 23m+1) (0-1(p(2)) — 23m+2) (P—1(p*(2)) — 23m-+3). This helps
us verify Equation 9.3.4.

Ideally, these would just be the restrictions of the functions in the points oracle to
this object.

Let d = O(m|H]|) be an upper bound on the degree of the above polynomials. Fix
d > poly(m,d/q). By results stated in the previous subsection about the zero on subcube
test with objects, we know that there exists a short list of (3m + 5)-tuples of polynomials

QW,Q®),...,Q® — here, t = O(}) — such that each Q(()i) is zero on the subcube H™ and

Pr [AQ)(@) # F(@) v 31 QW= AQ)] =1-5-0(1/q) — te

where ¢ denotes (d + |H|)/q.
Now, we would like to say that we can prune the above list of polynomial maps so that

we are only left with those tuples Q(*) such that Qg) is py, 4 for some satisfying assignment
A of the formula ¢, and yet the above condition (or a slight weakening) holds for this smaller
list of polynomials.

How do we verify that Q) is p,, 4 for some satisfying assignment A? We need to verify

that identity given in Equation 9.3.4 holds with Q((Ji) in place of p, 4 and Q(f)l in place of
A. Moreover, we also need to verify that Q(_Z)l is indeed a polynomial only in the first m
variables (as A is supposed to be). Call Q) (i € [t]) bad if either of these conditions does
not hold and good otherwise. We will now prove that pruning the above list by throwing

away all the bad Q) does not significantly change the above statement.
Fix any bad Q. Q) can be bad for two reasons:

e The first is that the following happens.

QY (2) # 3(@)(QY) () — 23m11) QY (0(x)) — 23m+2) QY (*(2)) — Z3m+3)

However, note that this implies that with probability at least 1 — d/q over the choice
of a random object €2, the above inequality continues to hold when restricted to 2.
(This is because there is a random z such that z, p(z), and p?(2) lie in .) However,
since our objects oracle A always satisfies the above with equality, we see that the
probability, for a random Q, that Q) |q = A(£) is at most d/q < e.

e The second reason why w could be bad is that the polynomial Q(_l)l is not a polyno-
mial in just the first m variables. This implies that Q(_z)l(zl, 29) # Q@l(zl, z3), where

9-12

z1 represents a tuple of m variables and zo and z3 represent disjoint tuples of 2m + 3
variables. Then, as above, this inequality continues to hold with probability at least
1 — d/q for a random €, since € contains a random z, 2’ that agree on the first m

coordinates. Hence, the probability that Q)| = A(f) is at most d/q < ¢.

Thus, we have shown that for any bad @,
06 =A <
Pr Q0o = AQ)] <«
Hence, a simple union bound gives us
Sl;r AQ)(z) £ f(x) Vv Fist. QW good and QW)|g = j(Q)} >1—-6—-0(1/q) — 2te

Let us see that this implies what we were looking for all along: a locally checkable proof
of the satisfiability of . Clearly, if ¢ were satisfiable, there would be an objects oracle
and a points oracle that would make the test accept with probability 1. However, if ¢ is
unsatisfiable, then there are no good Q) of the kind defined above (since each is actually
derived from a satisfying assignment). Thus, the above implies that

Pr [A()(x) # 7(@)] > 16— 0(1/q) - 2t

Now that we have designed something like a low-degree test for satisfying assignments
of a 3-CNF formula ¢, let us see how this implies the existence of a robust PCP for SAT.
This conversion is a generalization of the robust PCP we presented for checking if a given
function f : F™ — T at the beginning of Section 9.3. The proof is just a map f =
(f-1, fo, f1,- -+, famss) from F3™+3 to F3m+5 The verifier picks an object Q = (y, ¥/, 2,2)
at random and queries the proof for the value of f at each point in Q and accepts iff the
following conditions hold:

e Each coordinate of f restricts to a polynomial of degree O(m|H|) over €,
o fo(®) =2 1cicamas g (@i) fi(z) for all x € L(Q),
o f1(2) = f-1(2'), and

o folz) = ¢(2)(f-1(x) = 23m+1)(f-1(p(2)) — T3m+2)(f-1(p* (%)) — T3m+3) for all z €
L(Q).

To prove that this yields a robust PCP, let us fix, for each €2, a closest satisfying
assignment for the verifier when he queries the points in 2. For each choice of €2, this is a
(3m+5)-tuple of polynomials over €2 of degree d = O(m/|H|) satisfying the above mentioned
identities. In other words, this defines an object oracle A. Our analysis above yields that

E [agr(A(©), flo)] = E [Pr [A@)(@) = F(@)]] <
for § = poly(m,d/q). This shows that the robust soundness error of the PCP is §.

Let us now set the values for the above variables. We started with an instance of 3-SAT
with n variables. We will set the values of ¢, m, |H| so that the above proof goes through and

9-13

we get a good PCP with small soundness error ¢, size poly(n), and randomness O(logn).
For now, the query complexity and alphabet size of the PCP will remain large. In the next
lecture, we will bring these parameters under control.

Recall that we need |H|™ = n. We set m = —°8" and |H| = logn so that this holds.

loglogn
We will set ¢ = (logn)© for some large constant ¢ so that we get robust soundness error
0= 111 . The size of the proof is [F|>"+3 = ¢©(™) = poly(n). Finally, also note that the
polylogn

number of random bits used by the verifier is O(mlogq) = O(logn). B
Note that the proof specifies, for each point # € F3"*3, the values f(x), which is a
(3m + 5)-tuple of field elements. Hence, the size of the alphabet is ¢°(™ = poly(n). Also

note that an object Q contains ¢°) points and hence the query complexity of the PCP is
polylog(n).
To summarize, we have constructed a robust PCP for SAT with the following parameters:

Proof Size : poly(n)

Randomness : O(logn)

Robust soundness error : 1/polylog(n)

Query Complexity : polylog(n)

Alphabet Size : poly(n)

Thus, though we have a robust PCP with low soundness error, it uses a large (superconstant-
sized) alphabet and has superconstant query complexity. Our aim in the next lecture will
be bring these two down to constant size.

References

[DHO9] IriT DINUR and PRAHLADH HARSHA. Composition of low-error 2-query PCPs using de-
codable PCPs. In Proc. 50th IEEE Symp. on Foundations of Comp. Science (FOCS), pages
472-481. 2009. eccc:TR09-042, doi:10.1109/F0CS.2009.8.

[Sud99] MADHU SUDAN. 6.893: Approximability of optimization problems, 1999. (A course on
Approximability of Optimization Problems at MIT, Fall 1999).

A Appendix: Proof of Claim 9.3.4

Let D; be the distribution on pairs (£2,s) such that s C L(Q2) defined by picking Q =
(y,v', 2,2') at random and then picking a random plane s contained in L(f2). Let Ds be the
distribution on pairs (€2, s) such that s C L(2) defined by picking a random plane from F
and then choosing a random §2 such that s is contained in L(€2). We want to argue that D;
and Dy are statistically close — more precisely, that their statistical distance is O(1/q).

Surely, if D; and Dy are statistically close, then so are their marginals in each co-
ordinate. We prove this weaker statement below in the case of the marginal in the second
co-ordinate. We will use this to prove that D; and D, are statistically close.

Claim A.1. The marginal of Dy in the second co-ordinate (i.e., on the planes) is O(1/q)-
close to uniform.

Proof. Say a random object Q = (y,y/, z,2') is picked. To pick a random plane contained
in L(§2), we pick random vectors (aj,as,az) contained in L(£2) and consider the plane
{a1 + Bag + a3 | 8,7 € F}. Note that a random plane in the entire space can be assumed

9-14

http://eccc.hpi-web.de/report/2009/042
http://dx.doi.org/10.1109/FOCS.2009.8
http://people.csail.mit.edu/madhu/FT99/course.html

to be chosen by picking af, a}, a independently and uniformly at random from F3™*3 and
considering the plane as defined above.? Hence, it suffices to show that for a random (2 the
distribution of the three-tuple of vectors (a1, az, a3) is close to the uniform distribution over
(F3m+3)3, To do this, we proceed as follows.

To pick the tuple (ay,asz,as), we pick independently and uniformly at random scalars
aiyab, a2 al, By (i€ {1,2,3}) and set a; = a2 + alp(z) + a2p?(2) + L2’ + Biy + vy
We show that the following holds:

e For any fized choice of the scalars outside a “bad set”, the distribution of the vectors

(a1,az2,a3) (for a random Q = (y,y,2,2')) is exactly the uniform distribution over
(F3m+3)3.

e The probability that the scalars lie in the bad set is O(1/q).

The above will prove that the distribution of (a1, as,as) is O(1/q)-close to uniform and
hence complete the proof of Claim A.1.

Let us fix some choice of scalars and try to prove that the resulting distribution on
(a1, az2,as) is indeed uniform. The deﬁnition of the bad set will fall out of our analysis.

Fix some set of scalars a;, o}, o2, o, Bi,vi (i € {1,2,3}). Note that even for such a fixed
choice of scalars, there are dependenmes across the co-ordinates of the vectors aq, as, and
az. This is because of we are taking linear combinations of z, p(z), and p?(z). However, we
note that these dependencies are rather local, in the following sense. Partition the 3m + 3
co-ordinates of a1, as, as as follows. Define S; for i € [m + 3] by

{i,m+1i,2m+i} ifie[m],
Si = {{3m+(z— m)} if 1 > m.

Note that the co-ordinates of ai,as, and as across the different .S; are mutually inde-
pendent. Thus, to show that the distribution of a1, as, and as is uniform over (F3™+3)3 it
suffices to show that for each i € [m + 3], it is uniform when restricted to the co-ordinates
in Sz

Let us first consider the singleton sets S; = {3(i — 1) + j} for ¢ > m. The proof for each
S; is identical. Let j denote 3m + ¢ — m. We have the following.

ar; = (a1 + a3 + ai)zj + 42 + Biy; + ny;
azj = (g +ad +a3)z; + a2 + Bayj + Y2y
as; = (as+ a3 + as)zj + a3zj + B3y; + ’}’3yj
We want to prove that the distribution of (al, j, ag j, a3 ;) is the uniform distribution

over F3. Note that 2/ ,y],yj are all independently and uniformly chosen from F. Fix any
value of zj. Let M denote the matrix applied to the remaining field elements (zj,yj, y])

o Biom
ay P2 7
o B3 3

3Note that we are ignoring what happens when aj, as are not hnearly dependent. In this case, we generate
a line and not a plane. But this happens with probablhty at most 7. Hence, even if we output some default

plane when this does happen, this distribution is T close to the umform distribution over planes.

9-15

Note that whenever M is a non-singular matrix, then (aij,ag j, a3 ;) are indeed uni-
formly distributed over F3. We say that the choice of scalars is bad if M is singular. For
a random choice of the scalars, this happens with probability at most 3/¢. Note that this
bad event is independent of the choice of ¢ > m.
Now fix some S; for i € [m]. We wish to prove that the distribution on these co-ordinates
is uniform. Since the proof is identical for different i, we only prove the statement for ¢ = 1.
Moreover, by renaming co-ordinates, we assume that S; = {1,2,3}. We want to show that
the tuple (alyl, a12,013,0a21,0a2:2,023,031,03,2, CL373) is uniform over ng
A routine, ugly computation shows that the 9-tuple of field elements (a1 1, a1,2, 1,3, a2,1, 022,23, a3 1,032, @
can be written as

ai 1 (a14+a)) o2 of B 0 0 7 0 0 2 0
ai 2 al ar a2 0 B 0 0 4 0 29 ol zh
a3 of al a1 0 0 B 0 0 m 23 ol 2
a1 (g +ah) a3 o B2 0 0 42 0 0 Y1 0
az.2 = Oé% () Ck% 0 By 0 O y2 0 Y2 + O/Qzé
as 3 ol at az 0 0 B2 0 0 7 Y3 [eyA
as,1 (a3 +a3) o a3 B3 0 0 73 0 0 v 0
as2 ol as a2 0 B3 0 0 73 0 yh a3 2h
ass o} af a3 0 0 B3 0 0 73 s a2l
N

For any fixed value of 2, and zj, the above distribution is uniform over F?, as long
as the matrix N is non-singular; this implies that if NV is non-singular, the distribution of
(ak,1)k, is uniform. We would like to say that for a random choice of the scalars, N is non-
singular with high probability. To see this, consider the determinant of N as a polynomial
in the scalars. Clearly, it is a polynomial of degree at most 9. Note that it is a non-zero
polynomial, since by appropriate substitutions of the scalars, one can actually make N the
identity matrix. Hence, the probability that the determinant of N vanished for a random
choice of the scalars is at most 9/q. Let us call the choice of scalars bad if the determinant
of N vanishes. Note that as before, the choice of the matrix N does not depend on the set
of co-ordinates S; that we are considering.

We have shown that as long as the choice of the scalars don’t come from a bad set
(as defined above), the resulting distribution of (a1, a2, as) is uniform in each S; and hence
uniform over (F3™+3)3, Moreover, by a union bound, the probability that a random choice of
scalars lies in the bad set is at most 12/¢g. Hence, the statistical distance of the distribution
of (a1, a2,as) from uniform is at most 12/q. O

Hence, we see that the process of picking a random object 2 and then picking a random
plane s contained in L(£2) generates a close-to-random plane. Does this mean that D; and
D5 are statistically close? A weaker question is whether this even implies that the marginals
of D; and Dy are the same on the first co-ordinate (that is, on the objects). Before we answer
this question, let us abstract out the situation a little bit. Consider the bipartite graph Gy
whose left-vertices are objects and right-vertices are planes. We draw an edge (Q,s) iff

We use the self-explanatory terms “left-vertices” and “right-vertices” to denote the vertices in the two
different partitions of the bipartite graph.

9-16

s C L(R2). Let L denote the number of objects and R the number of planes. For each vertex
v of the graph, we use deg(v) to denote the degree of v.

Note that both distributions D1 and Dy are distributions over the edge set of Gy. The
distribution D (respectively, Ds) is generated by picking a random left (respectively, right)
vertex of the graph and then choosing a neighbour at random. We have just shown that the
marginal of D7 on the right vertices is close to uniform. However, note that this by itself
does not imply that D; and D9 are close to uniform, or even just that their left marginals
are close to uniform. To see this, consider the bipartite graph G whose left vertices consist
of a collection of vertices of degree 1 and a single vertex vy of large degree (see figure). It
is easy to see that in this case, the marginal of the distribution D; on the right vertices is
indeed uniform, but the marginal of Dy on the first co-ordinate is very different from that
of D; (the distribution Dy puts much more weight on).

Vo

We need to show that such a situation does not arise in the case of the graph Gg. We
do this by noting that Gg is close to left-regular, in a well-defined sense. Let dy denote
the maximum left-degree of Gy. Note that the left-degree of a left-vertex €2 is equal to the
number of planes contained in L(2) and is hence completely determined by the dimension of
the space L(€) (the more the dimension, the larger the degree). Moreover, for a randomly
picked €, the space L(2) takes its maximum possible dimension (which is 6) with probability
1 - O(z)-

Armed with the above fact and Claim A.1, we are ready to show that D; and Ds are
indeed statistically close. Below, whenever {2 and s appear in a summation or double
summation, they satisfy the property that (€2, s) is an edge in the graph Gy.

D1 — Dol =) |D1(R,5) — Dy(, 5))|
(@.9)

_ 1 1

- Z%: Ldeg(©) Rdeg(s)

9-17

Claim A.1 tells us that the marginals of the distributions of D; and Ds on the planes
are statistically O(1/q)-close. In our graph terminology, this means that

5| (% o) %~ ()

s Q
~o(1) A

Equation A.2 seems to be a “triangle-inequality” away from Equation A.1. To bridge
the gap, we will use the fact that Gy is close to left-regular.
Define T as follows.

1 1 1 1
Ti= Z%: ‘Ldo " Rdeg(s)| Z ‘%: Ldy Rdeg(s)

We will show that 7" is close to both |D; — Ds| and the expression in Equation A.2.
First, let us consider ||D; — Do| — T

2.

s

1 1
%: Ldeg(Q) Rdeg(s)

1 1
Ldeg(Q) Rdeg(s)

1 7 1
Ldy Rdeg(s)

Dy =Dy = T| = |
(5,42)

<y
(5,42)
<y
(5,82)

Since dp is the maximum left-degree of the graph Gy, the above can be bounded as
follows

(s.9)
7 1 7 1
Ldy Rdeg(s)

1 1
Ldeg(Q) Rdeg(s)

1 B 1
Ldeg(Q?) Ldy

1
D1 —Dy| —T| < E _
H 1 2| | = Ldeg(Q)
(5,02):deg()#do

1 1
= Z =0 [deg(Q2) # do] = O <qm>

Q:deg(Q)#do

We now show that T is close to expression in Equation A.2. The proof is almost exactly
the same as the above proof, with the only difference being that we use a different expression

9-18

for T.

S 1 A 1 Z 11
—~ 15 Ldeg(?) Rdeg(s) N Q) Rdeg(s) Ldy Rdeg(s)
1 1
"~ Rdeg(s ‘Z Ldy Rdeg(s) ‘
1
<
Z Ldeg "~ Ldy

1
< Z —_
(s ey = 08

- > =rrlew@ 2l =0 ()
L Q qm
Q:deg(Q)#do

Combined with Equation A.2, the above implies that |D; —Ds| = O(%) +O(q%) =0(2).
This completes the proof of Claim 9.3.4.

9-19

	Recap of the Low degree test
	Label Cover and Robust PCPs
	Robust PCPs from Low Degree Tests
	Zero on subcube test
	Arithmetization
	The Object-point test
	Defining our objects and completing the construction of the PCP

	Appendix: Proof of [Claim]claimgoodobjects

