
Limits of Approximation Algorithms 12 Apr, 2010 (TIFR)

Lec. 10: Query reduction via robust PCP composition

Lecturer: Prahladh Harsha Scribe: Ramprasad Saptharishi

10.1 Introduction

We have been gearing towards proving the PCP theorem and last class we came quite close
to what we wanted. Using the low-degree test, we constructed a Zero-On-Subcube test
which was used to give a PCP for 3SAT. The PCP was in fact a robust PCP for 3SAT and
had the following parameters:

Proof Size : poly(n)
Randomness : O(log n)
Robust soundness error : 1/polylog(n)
Query Complexity : polylog(n)
Alphabet Size : poly(n)

We are doing good in the proof size, randomness used and robust soundness error. In
fact, the robust soundness error is even sub-constant! However, the alphabet size is too large
and so is the query complexity. How do we reduce these two parameter without affecting
the others too much?

Alphabet Reduction: Alphabet reduction can be easily achieved by simple code con-
catenation: encode each alphabet of the proof using a code over a smaller alphabet but
with very good distance, say 1 − ρ. It can be easily shown that the robustness of the new
PCP over the smaller alphabet worsens only by an additive factor of poly(ρ). The details
of this reduction is defered to Appendix A1.

Query reduction: This will be the main focus of this lecture. For this, let us first recall
the definition of a robust PCP.

Let Φ be an instance for L = 3SAT and let Π ∈ Σm be the (purported) proof provided
by the prover to show that Φ ∈ L. The general structure for the verifier for L was the
following:

• Using Φ and some random bits R, choose a window IR ⊂ [m] in the proof and an
acceptance predicate ϕR. (we shall drop the subscript R when the context is clear)

• Accept if and only if ϕR (ΠIR) is true.

(Completeness) If Φ ∈ L, then there exists a proof Π such that

Pr
R

[ϕ(ΠI) = 1] = 1

1Prahladh: These notes are far more detailed than the lecture it corresponds to. Thanks to the scribe
Ramprasad for filling in all the missing details in the lecture (especially Appendix A and Appendix B)

10-1

(Robust Soundness) If Φ /∈ L, then for every Π,

E
R

[agr (ΠI ,SAT(ϕ))] ≤ δ

For simplicity, we shall assume some regularity conditions on the PCP. We’ll assume
that all the subsets IR are of the same size and each i ∈ [m] is present in the same number
of IR’s2.

In order to reduce the query complexity, we have to devise a way by which the verifier
can check if ΠI satisfies ϕ or not without reading all of ΠI . This is very reminiscent of
the philosphy of PCP which is to probe an encoding at very few places to decide if ϕ is
satisfiable or not. This is what we are going to do – run an inner PCP to check if ΠI satisfies
ϕ or not. This idea of using an inner verifier to reduce query complexity is refered to as
composition in the PCP literature and is due to Arora and Safra [AS98].

Let us see if we can perform this composition. Note that we cannot perform recursion
or composition. The situation here is slightly different; we do not want to know if ϕ is
satisfiable or not but we want to know if ϕ is satisfiable by this specific ΠI . This is also
crucial because, of course, ϕ is going to be satisfied by some assignment (well if it was always
false, why would the verifier be interested in checking it!). We need more from the inner
verifier than the outer verifier to perform this consistency test. We will be able to perform
this consistency test if the “inner” proof were something more than just a “locally checkable
encoding” of a satisfying assignment; we need it to be a “locally decodable encoding”.

10.2 Decodable PCPs

The goal is to check if the window ΠI satisfies the predicate ϕ or not. As before, we would be
encoding this ΠI using a proof π and run the “inner PCP” on it. And we want to augment
the inner PCP with some more structure so that we can check if the encoded satisfying
assignment is indeed ΠI . One possible approach is to expect the inner verifier to decode
locations of the satisfying assignment whenever to accepts its proof. This is implemented
as follows: the inner PCP verifier is given an additional input i, which is an index into the
satsifying assignment and it is expected to return the i-th index of the satisfying assignment
it encodes or reject.

10.2.1 Attempted definition

Let π be a (purported) encoding of a satisfying assignment to ϕ. The verifier on randomness
r and input index i picks a random window J = J(i, r) and computes a function f = f(i, r)
on it. We’ll say that this protocol is a dPCP if the following conditions hold:

(Completeness) For every ϕ and every satisfying assignment w of ϕ, there exists a proof
π such that

Pr
i,r

[f(πJ) = wi] = 1

2The robust PCP constructed in the earlier did not satisfy these regularity conditions. We will need to
some standard regularizing transformations, which we will not go into in this lecture, to make the PCP
regular.

10-2

I.e., for every satisfying assignment there is a faithful encoding that can be decoded
as well

(Soundness) For every ϕ and and π, there is at most one satisfying assignment w such
that

Pr
i,r

[f(πJ) /∈ {⊥, wi}] ≤ δ

Or in other words for any proof, there is at most one satisfying assignment w that it
can possible decode to (when it does not reject).

We could even try to extend it to a “robust dPCP” with the following stronger con-
dition.

(Robust Soundness) Let BAD(f, i)
def
= {z : f(z) /∈ {⊥, wi}}. Then,

E
i,r

[agr (πJ ,BAD(f, i))] ≤ δ

Let us first see how this definition would be useful. We are given a proof Π to show that
Φ ∈ 3SAT. The outer verifier chooses a window I and a predicate ϕ and wishes to check if
ΠI is a satisfying assignment of ϕ. To do this, it picks a random index i ∈ I and runs the
dPCP dor ϕ on index i. The verifier then checks if (ΠI)i matches with the output of the
dPCP.

Why would this work? Suppose Φ /∈ 3SAT. Notice that by the robustness of the outer
verifier, on average, ΠI is far from any satisfying assignment. Therefore, no matter what
proof the prover gives to the inner dPCP the outer verifier’s view ΠI can agree with w in
no more than δ fraction of the places. Therefore, this new verifier would reject the proof.

Unfortunately the above definition of dPCP is not realisable. The main reason being
that we want a unique w for any proof π in the soundness condition. Unique decoding is
possible if δ were large, close to 1. However, we are interested in the case when δ is very
small, in fact, even sub-constant. To get around this problem, we will let the dPCP decode
consistently with a short list of proofs instead of just one polynomial! list is inevitable!

Similar to the low-degree test discussed in the earlier lectures, we shall modify the
above definition to include not one satisfying assignment but a “small list of satisfying
assignments” that the dPCP can decode to.

10.2.2 Modified definition

Definition 10.2.1 (dPCPs). Let ϕ be a predicate. ϕ is said to have a decodable PCP
(dPCP) with list size L if there exists a verifier (or decoder) that behaves as follows. On
input a index i and oracle access to a proof π, the verifier/decoder uses randomness r to
pick a window J = J(i, r) and a function f = f(i, r) with the following properties:

(Completeness) If w is a satisfying assignment of ϕ, then there exists a π such that

Pr
i,r

[f(πJ) = wi] = 1.

10-3

(Soundness) For every π, there is a short list of satisfying assignments list(ϕ) =
{
w1, · · · , wL

}
of ϕ (i.e., ϕ(wk) = 1 for all k) such that

Pr
i,r

[
f(πJ) /∈

{
⊥, w1

i , w
2
i , · · · , wLi

}]
≤ δ.

Further the dPCP is said to be robust if the following stronger soundness condition
holds:

(Robust Soundness) Given proof π, there is a short list of satisfying assignments list(ϕ) ={
w1, · · · , wL

}
of ϕ such that

E
i,J

[agr (πJ ,BAD(f, i))] ≤ δ

where BAD(f, i)
def
=
{
z : f(z) /∈

{
⊥, w1

i , w
2
i , · · · , wLi

}}
.

This is the definition we would be working with. Do we actually have such decodable
PCPs? Yes, we do — the Zero-On-Subcube test can be changed slightly to give us a
decodable PCP.

10.2.3 dPCPs from the Zero-On-Subcube test

The robust PCP for NP from last lecture proceeded as follows: The prover claimed that a
certain function PΦ,A was zero on a subcube Hm and provided the evaluation of PΦ,A and
several other auxillary functions on all points in Fm. The verifier V would pick a random
“object” Ω ⊆ Fm and query the function value on all points in Ω and checks if there is
indeed a “good” polynomial on the restriction. Recall that the objects Ω were sampled by
picking points z, z′, y, y′ at random and setting Ω = span(z, ρ(z), ρ2(z), z′, y, y).

Lets see how we can construct a dPCP from this. Now suppose we are given an index i
and, if the verifier was going to accept the proof, we want the i-th bit of A. Recall that i
was identified by a point pi ∈ Hm and what we are asking for is the evaluation of A at this
point.

The most natural thing to do is to enlarge the Ω’s that contain the point pi. We can
modify the Zero-On-Subcube test to use objects of the form

Ω = span(z, ρ(z), ρ2(z), z′, y, y, pi)

And since the point pi is in each Ω that we sample, we also have the evaluation of A at
i. The verifier/decoder of this dPCP returns this A(i) if it were to accept and returns ⊥ if
it were to reject. Let us call this function f . The list-decoding statement we had was the
following:

For every “objects oracle” A, there exists a small list of polynomials Q1, · · · , Q`
(where ` ≤ poly(1/δ)) constructed from satisfying assignments such that

Pr
Ω

[
Zero-On-Subcube test fails or ∃i : Qi≡

Ω
A(Ω)

]
≤ δ

10-4

For any object Ω, let eval(Ω) be the set of evaluations on Ω. Define the set BAD(f, i) ={
ω ∈ eval(Ω) : f(ω) /∈

{
⊥, Q1(pi), Q

2(pi), · · · , Q`(pi)
}}

. By the robustness of the PCP, we
have

E
i,Ω

[agr (ω,BAD(f, i))] ≤ δ

which is exactly what we would want for a robust dPCP.

Remark 10.2.2. Notice that if we want to run a dPCP as an “inner verifier” to check if
ΠI is a satisfying assigment to ϕ or not, the alphabet size for the dPCP must be larger than
the alphabet size of the outer proof. Therefore it is essential that we reduce the alphabet size.
But for now, let us assume that the alphabet size can be brought down to polylog(n) without
altering the other parameters too much. The details of alphabet reduction are discussed in
Section A.

10.3 Composition

Now we have a robust outer PCP and a robust inner dPCP and we’ll see how we can compose
them to reduce the query complexity. Here is one possibility that we discussed earlier.

Given a formula Φ, the prover provides a proof Π. The old verifier, using his random
coins R, would have picked a pair (IR, ϕR) and accepted if and only if ϕR(ΠIR) is true.

In the composed PCP, the prover not only provides the proof Π but also provides a
proof π(R) for every random coin R of the old verifier. π(R) is supposed to be the
dPCP for ϕR. The composed verifier, first runs the outer verifier, and uses random
coins R to choose a pair (IR, ϕR) as before. Then the verifier picks a random index
i ∈ IR and now runs the inner dPCP decoder on input ϕR and index i on proof π(R).
It accepts if the value decoded by the dPCP decoder equals (ΠI)i.

The following are the parameters of the composed PCP.

Randomness Query Complexity Robust Soundness Error

Outer PCP R Q ∆
Inner PCP r q δ, `
Composed PCP R+ r + logQ q + 1(outer) ?

The query complexity has dropped from Q to around q, which is what we wanted to
achieve. What can we say about the robust soundness error of the composed PCP? Defining
it is a bit dicey since all queries of the composed verifier aren’t over the same alphabet – it
involves one big query from the outer proof, and several smaller queries in the inner proof.
But suppose we still define agreement by an appropriate weight put on the outer and inner
queries, can we argue that the robust soundness error is small? Unfortunately, no; we can’t
say anything better than 1/2 for the robust soundness error and here is why.

10-5

The views of this composed verifier consists of a probe in the outer proof Πi and
smaller probes in the inner proof π̄ = π1, · · · , πq. Satisfying views are of the form
z̄ = (z0, z1, · · · , zq) where z0 = f(z1, · · · , zq). To define agreement, if more than half
the weight was put on π′js, then agr ((Πi, π1, · · · , πd), (f(π̄), π1, · · · , πd)) is at least
1/2. Similarly, if there was more than 1/2 weight put on the Πi, then we can choose
z1, · · · , zd appropriately so that f(z1, · · · , zd) = Πi and a similar thing would hold.

Hence this method of composition would not work if we want to retain the robustness of
the PCP. How can we modify this composition so that query complexity is reduced without
compromising the robustness. Note that any composition technique in which the proof is
split logically across two parts – an outer and an inner proof, is going to run into the same
problem. Can we do away with one of the proofs? What was the role of the outer proof
anyway? What prevented the prover from giving satisfying assignments for each of the inner
proofs? The only role that the outer proof plays is to enforce some sort of consistency across
various windows chosen by the verifier. This is what prevents the prover from just choosing
fresh satisfying assignments for each window; the assignments that are being encoded must
be consistent across the intersections.

How about getting rid of the outer proof completely and just checking if the inner
proofs are consistent amongst each other? This would be our modified composition proce-
dure [MR08, DH09] and we will show that it surprisingly preserves the robustness of the
composed PCPs.

Modified Composition

1. The prover provides an inner-proof π(R) for every possible random coin R of the outer
PCP. Thus, the proof for the composed verifier is Υ = {π(R)|R outer random coins }.

2. The verifier choose an index i ∈ [M] in the outer proof and let I1, · · · , ID be all
possible windows that contain i. We will refer to the quantity D as the proof degree
of the outer PCP. Let R1, · · · , RD be the outer random coins that led to the windows
I1, · · · , ID respectively and ϕ1, · · · , ϕD be the corresponding consistency predicates.

3. For k = 1 to D, run the (inner) dPCP decoder on input ϕk and index i on proof πRk

using randomness r.

4. Accept if and only if all the D “dPCP decoders” do not reject and return the same
value. In other words, accept only if

f1 ((πR1)J1) = f2 ((πR2)J2) = · · · = fD ((πRD
)JD) 6= ⊥,

where (Jk, fk) refers to the window-decoding function pair output by the dPCP decoder
on input ϕk and index i.

The parameters of this composition are as follows:

10-6

Proof Size Randomness # Queries Soundness Error Proof degree

Outer PCP M R Q ∆ D
Inner dPCP m r q δ, ` d
Composed PCP 2R ·m logM + r3 qD ∆`+ δ d
Sampler based-
-Composed PCP 2R ·m logM + r + logD q · poly

(
1
ε

)
(∆ + ε)`+ δ d

We will show below that the composed verifier has robust soundness error at most
∆` + δ, which is small as long as ∆ � 1/`. Thus this robust composition reduces query
complexity from Q to qD without compromising on the robustness. However, this is a
query reduction only if qD < Q. This might not always be the case, as the proof degree
D could be very large. To get around this issue of large D, we could do the following: in
step 2, instead of querying all the windows I1, . . . , ID that the index i participated in, query
only a pseudorandom sample of the windows. Assuming the composed PCP has parameters
as mentioned in the table above, it is easy to see that this sampler based composed PCP
has parameters as indicated in the bottom row of the above table (the details of this are
defered to the Appendix B.). For now, we will assume that D is small and proceed with
the robustness analysis.

10.3.1 Robustness Analysis

As mentioned before, we assume that the PCPs in context are regular in the sense that all
windows are of equal sizes and every index i participates in the same number of windows.
Proposition 10.3.1 shows that the above composition is sound and maintains robustness.

Let us first understand what are the views of the composed verifier and the corresponding
accepting configurations. The prover provides a proof π(R) for every possible outer random
coins R of the outer verifier. The composed verifier chooses an index i into the outer proof
and let I1, · · · , ID be all possible windows that involve i. Let R1, · · · , RD be the outer
randoms coins that generated these windows. Let π(1) = π(R1), · · · , π(D) = π(RD) be the
corresponding proofs provided by the prover. On input i, using the randomness r, the
D inner dPCP verifier/decoder generate (J1, f1), · · · , (JD, fD) window-function pairs. Let

σk = π
(k)
Jk

. The composed verifier V then checks if the decodings across the fi’s match
(i.e., f1(σ1) = · · · = fD(σD) 6= ⊥. Thus, satisfying views for the composed verifier are the
following

SAT(i, r) = {z1 · · · zD : f1(z1) = f2(z2) = · · · = fD(zD) 6= ⊥}
Recall that for every π(R), there is an associated list(π(R)) of at most ` satisfying assig-

ments wR1 , · · · , wR` of ϕR. The robustness of the dPCP stated that for every proof π(R),

E
i,r

[
agr
(
π

(R)
J ,BAD(f, i)

)]
≤ δ,

where
BAD(f, i) =

{
z : f(z) /∈ {⊥} ∪ (list(π(R)))i

}
Recall that proof Υ for the composed PCP verifier is the concatenation of all π(R)’s

over the different random coins R of the outer proof. Let Si,r = J1 ∪ J2 ∪ · · · JD, the

3can use the same random seed r for all the parallel runs

10-7

window corresponding to i and r. Si,r denotes the local window of the composed verifier
on randomness (i, r). The following proposition shows that the composed PCP is robust.

Proposition 10.3.1. If Φ /∈ 3SAT, then for every proof Υ for the composed PCP, we have

E
i,r

[
agr
(
ΥSi,r ,SAT(i, r)

)]
≤ ∆`+ δ.

Proof. For any values that i and r take, let z1 · · · zD be the string in SAT(i, r) that is closest
to ΥSi,r and let k be a random index in 1, · · · , D. By the regularity assumption on the
PCP,

agr
(
ΥSi,r ,SAT(i, r)

)
= E

k
[agr (σk, zk)]

Let ⊥ 6= α = α(i, r) = f1(z1) = f2(z2) = · · · = fD(zD). Let ck(i, r) be the indicator random
variables defined as follows:

ck =

{
1 if α ∈ (list(π(k)))i

0 otherwise

Therefore,

E
i,r

[
agr
(
ΥSi,r ,SAT(i, r)

)]
= E

i,r,k
[agr (σk, zk)]

= E
i,r,k

[ck · agr (σk, zk)] + E
i,r,k

[(1− ck) · agr (σk, zk)]

Lets focus on the second term. For every fixed k, if ck = 0, then fk(zk) = α which is not
in {⊥} ∪ (list(fk))i. Therefore, zk ∈ BAD(fk, i) and the second term is upper bounded by

Ei,r,k
[
agr
(
π(k),BAD(fk, i)

)]
which is upper bounded by δ by the robustness of the dPCP.

Hence,

E
i,r

[
agr
(
ΥSi,r , SAT(i, r)

)]
≤ E

i,r,k
[ck · agr (σk, zk)] + δ

≤ E
i,r,k

[ck] + δ

Suppose we assumed that Ei,r
[
agr
(
ΥSi,r , SAT(i, r)

)]
> ∆` + δ. Then the above equation

shows that Ei,r,k [ck] > ∆`. To get the contradiction, we’ll use this to construct an a proof Π
for outer verifier that violates the robustness of the outer verifier. The proof Π is constructed
in a randomized fashion as follows:

• For every outer random coinsR, there is a small list of satisfying assignments list(π(R)).
Define y(R) to be one satisfying assignment randomly chosen from list(π(R)). Note
that y(R) is a satisfying assignment for ϕR.

• For every i ∈ [M], set Πi to be the most popular choice of y(R)i amongst all random
coins R’s that generate windows IR that contain i.

If E
i,r

[
Pr
k

[α ∈ (list(π(Rk)))i]

]
= E

i,r,k
[ck] > ∆`

then E
i,r

[
Pr
k

[α = y(Rk)i]

]
> ∆

10-8

By regularity, picking an i and then an Ik is the same as picking a window I and an
index i ∈ I. Also, observe that for every fixing of i and r, the Πi was chosen to be
argmaxα PrR:i∈IR [α = y(R)i]. Therefore,

∆ < E
i,r

[
Pr
k

[Πi = y(Rk)i]

]
= E

R

[
Pr
i∈IR

[Πi = y(R)i]

]
= E

R
[agr (ΠIR , y(R))] ≤ E

R
[agr (ΠIR , SAT(ϕR))]

which is a contradiction to the robustness of the outer PCP.

Therefore the composition is indeed robust.

10.3.2 Fixing Parameters

The following parameters describes the parameters that we get after composing the outer
PCP with the inner dPCP using the sampler-based composition.

Outer PCP Inner dPCP Composed PCP

Randomness O(log n) O(log log n) O(log n)
Query Complexity polylog(n) polyloglog(n) polylog log(n)
Alphabet Size 4 polylog(n) polylog(n) polyloglog(n)
Robust soundness error 1

polylog(n)
1

polyloglog(n) , polyloglog(n) 1
polyloglog(n)

Thus, one round of composition reduces the window size (ie., query complexity) from
polylog(n) to polyloglog(n) and in process the robust soundness error has only increased
from 1/polylog(n) to 1/polyloglog(n). We could keep repeating this process till we obtain
PCPs with the desired query complexity (or robust soundness error). For instance, to obtain
PCPs with constant query complexity, we perform log∗ n rounds of composition. We, thus,
have the following Robust PCP Theorem for NP.

Theorem 10.3.2 (Robust PCP Theorem for NP). For every language L ∈ NP and for every
δ : Z≥0 → (0, 1), there exists a robustPCP for L with randomness O(log n), query complexity
poly

(
1
δ

)
over an alphabet of size poly(1/δ) with perfect completeness and robust-soundness

error at most δ.

References

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new character-
ization of NP. J. ACM, 45(1):70–122, January 1998. (Preliminary Version in 33rd FOCS,
1992). doi:10.1145/273865.273901.

[DH09] Irit Dinur and Prahladh Harsha. Composition of low-error 2-query PCPs using de-
codable PCPs. In Proc. 50th IEEE Symp. on Foundations of Comp. Science (FOCS), pages
472–481. 2009. eccc:TR09-042, doi:10.1109/FOCS.2009.8.

4The alphabet size has been reduced using alphabet reduction (see Theorem A.6 in Appendix A).

10-9

http://dx.doi.org/10.1145/273865.273901
http://eccc.hpi-web.de/report/2009/042
http://dx.doi.org/10.1109/FOCS.2009.8

[Gol97] Oded Goldreich. A sample of samplers – a computational perspective on sampling.
Technical Report TR97-020, Electronic Colloquium on Computational Complexity, 1997.
eccc:TR97-020.

[MR08] Dana Moshkovitz and Ran Raz. Two query PCP with sub-constant error. In Proc.
49th IEEE Symp. on Foundations of Comp. Science (FOCS), pages 314–323. 2008. eccc:

TR08-071, doi:10.1109/FOCS.2008.60.

Appendix

We didn’t quite discuss alphabet reduction and degree reduction in detail during the class.
However, here is a complete (more-or-less) description of the procedure.

A Alphabet Reduction

It is convenient to work with the label cover formulation instead of the robust PCP formu-
lation for the purpose of alphabet reduction. Suppose we are given an instance of a δ-gap
label cover (U, V,Σ′,Σ,F). We would like to reduce the alphabet Σ to something smaller.
The idea is to use an error correcting code and encode the labelling using it. This would
increase the query complexity a little but would still remain polylog(n). Before we go into
the actual construction, we need a few facts about error correcting codes.

Definition A.1 (Error correcting codes). A function C : Σ −→ σk is said to be an error-
correcting code of distance 1− δ if agr (C(a), C(b)) ≤ δ for every a 6= b.

There are standard, well-known constructions of error correcting codes with excellent
parameters. The following would be sufficient for our purposes.

Fact A.2. For every δ > 0 and alphabet Σ there exists a code C : Σ −→ σk with relative
distance 1− δ where |σ| = O(1/δ2) and k = O(log |Σ|/δ2).

The following claim shows that there aren’t too many codewords close to a given message.

Fact A.3. For any set of words w, β1, · · · , β` ∈ σk,∑
i

agr (w, βi) ≤ 1 +
∑
i 6=j

agr (βi, βj)

Proof. Just use inclusion exclusion.

Claim A.4. Let C be a code of distance 1− δ and let η > 2
√
δ. Then for any w ∈ σk,

|{a ∈ Σ : agr (C(a), w) ≥ η}| ≤ 2

η

Proof. Plug in C(a)’s for the βi’s in the above fact and the bound follows.

10-10

http://eccc.hpi-web.de/report/1997/020
http://eccc.hpi-web.de/report/2008/071
http://eccc.hpi-web.de/report/2008/071
http://dx.doi.org/10.1109/FOCS.2008.60

We are now well-equipped to do alphabet reduction. Let C : Σ −→ σk be an error-
correcting code with distance 1 − η3 for some η ≤ 1/4. Given an instance (U, V,Σ′,Σ,F)
of label-cover, it shall be reduced to an instance (U, V × [k],Σ′, σ,F ′). The projections
functions on the edge e = (u, (v, i)) is a function f ′e : Σ′ −→ σ is just the i-th block of the
encoded version:

f ′e(α) = C(f(u,v)(α))i

It is clear that the reduction has completeness 1, (i.e) maps satisfiable instance to satisfiable
instances. The following theorem shows that it maintains soundness as well.

Theorem A.5. If the instance I = (U, V,Σ′,Σ,F) is at most δ-satisfiable, then the reduced
instance I ′ = (U, V × [k],Σ′, σ,F ′) is at most (δ + 3η)-satisfiable.

Proof. Suppose Π′ = (π1 : U → Σ′ , π′2 : V × [k] → σ) was a labelling to the reduced
instance. For every vertex v ∈ V , and let us look at the fraction of edges a label β on v
would have satisfied:

δv(β) = Pr
u∈Γ(v)

[
f(u,v)(π1(u)) = β

]
The fraction of edges incident on {(v, i)}i that are satisfied is given by:

δ′v =
∑
β

δv(β) · Pr
i

[
π′2(v, i) = C(β)i

]
Assuming that the label-cover instance is regular, the fraction of edges that satisfied is

Ev[δ′v]. From Π′, construct a labelling Π for the instance I as follows:

The labelling on the left vertices U is given by π1. As for the right vertices, do the
most natural thing – choose π2(v) to be the β that maximizes δv(β).

If δv = max δv(β), the fraction of edges that are satisfied is Ev[δv]. We’ll show that
δ′v ≤ δv+3η and that would prove theorem. For every v ∈ V , let π′2(v) = π′2(v, 1) · · ·π′2(v, k)
and list(v) = {β : agr (π′2(v), C(β)) ≥ η}.

δ′v =
∑
β

δv(β) · Pr
i

[
π′2(v, i) = C(β)i

]
=

∑
β∈list(v)

δv(β) · agr
(
π′2(v), C(β)

)
+

∑
β/∈list(v)

δv(β) · agr
(
π′2(v), C(β)

)
≤

∑
β∈list(v)

δv(β) · agr
(
π′2(v), C(β)

)
+ η

≤
(

max
β

δv(β)

) ∑
β∈list(v)

agr
(
π′2(v), C(β)

)
+ η

≤ δv

1 +
∑

β1 6=β2∈list(v)

agr (C(β1), C(β2))

+ η (by Fact A.3)

≤ δv

(
1 +

(
|list(v)|

2

)
· η3

)
+ η ≤ δv + 3η (by Claim A.4)

10-11

Now, if we translate the above theorem to the language of robust PCPs, we have the
following. Let C : Σ→ σk be a code with distance 1−η3. Suppose L has a robust PCP with
randomness r, query complexity q and robust soundness error δ over the alphabet Σ, then
L has a robust PCP with randomness r, query complexity qk and robust soundness error
δ + 3η over the alphabet σ. Now, setting η = δ/3 and choosing a code given by Fact A.2,
we have the following.

Theorem A.6 (alphabet reduction). Suppose L has a robust PCP with randomness r,
query complexity q and robust soundness error δ over the alphabet Σ, then L has a robust
PCP with randomness r, query complexity O

(
q log |Σ|/δ6

)
and robust soundness error 2δ

over an alphabet of size at most O
(
1/δ6

)
.

In other words, if the robust soundness error is δ, we might as well reduce the alphabet
size to poly(1/δ) without affecting other parameters too much.

B Proof Degree Reduction via samplers

Suppose we are given a label-cover instance and suppose the average degree of vertices on
the right is large. We wish to reduce this instance to another instance with small right-
degree and not too much loss in the other parameters. The reduction would use objects
called samplers which are defined as follows.

Definition B.1 (Sampler). A bipartite graph H = (A,B,E) is said to be an (ε, δ)-sampler
if for every subset S ⊆ A,

Pr
b∈B

[
|Γ(b) ∩ S|
|Γ(b)|

>
|S|
|A|

+ ε

]
≤ δ

In other words, neighbourhoods of most vertices b behave like a random sample of A, in
the sense that their density within any fixed S is close to what is expected. Construction
of such graphs is well-known and the following theorem is from a technical report by Oded
Goldreich titled ‘A Sample of Samplers’.

Theorem B.2. [Gol97]There exists a polynomial time algorithm that, given an integer n
and a parameter ε > 0, output an (ε, ε2)-sampler with |A| = |B| = n and the right degree
4/ε4.

With these in our arsenal, we shall go ahead with the degree reduction procedure.
Suppose we are given a label cover instance I = (U, V,Σ1,Σ2,F) such that the average
right degree is D. We’ll reduce it to an instance I ′ = (U, V ′,Σ1,Σ2,F ′) as follows:

• Vertices: For every vertex v ∈ V , let the degree of v be Dv. In V ′, each v is going to
be expanded by Cv = {v} × [Dv], a cloud of Dv many vertices.

• Edges: For every v, place an (µ, µ2)-sampler between Γ(v) and Cv. Let d be the
degree of the sampler.

10-12

• Constraints: The constraint on an edge between u an (v, i) is same as the constraint
on (u, v) in the original graph.

All that is left to do is to show that completeness and soundness are more or less
maintained. Of course, it is easy to observe that completeness is maintained — just use the
honest labelling. The following lemma shows that soundness is maintained as well.

Lemma B.3. If the instance I was at most δ-satisfiable, then the instance I ′ is at most
(4µ+ δ)-satisfiable.

Proof. Let L′ = (L′1, L
′
2) be a labelling of I ′ that satisfies the largest fraction of constraints.

From this define a randomized labelling of I in the most natural way:

For every vertex u ∈ U , the label L1(u) is just L′1(u). For a vertex v ∈ V , pick a
random element (v, i) ∈ Cv and set L2(v) = L′2(v, i).

For each v ∈ V , let δv denote the fraction of edges adjacent on v that are satisfied by
this assignment.

δv =
∑
σ∈Σ2

Pr[L2(v) = σ] Pr
u∈Γ(v)

[f(L1(u)) = σ]

And since I is at most δ-satisfiable, we have that
∑

v δvDv ≤ δ|E|.

Claim B.4. For each v, the fraction of edges in I ′ between Cv and Γ(v) that are satisfied
is at most 4µ+ δv.

Before we prove this claim, let us see how this implies the lemma. Since the number
of between Cv and Γ(v) is dDv, the number of edges between them that are satisfied is at
most dDv(4µ+ δv). Summing over all v’s, we have

satisfied edges in I ′ ≤
∑
v∈V

dDv(4µ+ δv)

= 4µd
∑
v∈V

Dv + d
∑
v∈V

δvDv

≤ 4µd|E|+ dδ|E|
= d|E|(4µ+ δ) = |E′|(4µ+ δ)

which proves the Lemma (modulo the proof of the claim).

Proof of Claim B.4. Let A = Γ(v) and let B = Cv. For any subset S ⊆ Σ2, let B(S) be
the set of vertices in B that have been assigned a label in S. And let A(S) be the set of
vertices in A that have been assigned a label “compatible with S”. That is,

A(S) =
{
u ∈ A : f(u,v)(L1(u)) ∈ S

}
, B(S) = {v ∈ B : L2(v) ∈ S}

It is clear that if {S1, · · · , Sk} is a partition of Σ2, then the {A(S1), · · · , A(Sn)} and
{B(S1), · · · , B(Sn)} are partitions of A and B respectively. We’ll create such a partition
with some additional properties.

10-13

Start with {A(σ)}σ∈Σ2
. If |A(σ)| > µ|A| for any σ, keep {σ} as a singleton in the

partition. As for smaller sets, greedily keep grouping σ’s into a sets Si until |A(Si)| ≥ µ|A|.
Thus we have a partition of Σ2 into sets S1, · · · , Sk with the following properties:

• The parts are either singletons or larger sets. For every singleton {σ} in the partition,
the corresponding A(σ) is at least µ|A|.

• For every non-singleton Si in the partition, |A(Si)| ≤ 2µ|A|.

• The number of sets in the partition is at most 1/µ.

For brevity, let Ai = A(Si) and Bi = B(Si). Observe that the satisfied edges between A
and B are all contained in

⋃
E(Ai, Bi). We’ll estimate E(Ai, Bi) for each i to prove the

claim. Since we put a sampler between A and B, it must be the case that almost every
b ∈ B, the number of neighbours of b in Ai must be roughly as expected. However, there
might be a few “bad” b’s that have way too many neighbours in Ai, but thankfully these
are few in number. Formally, for each i define the set B∗i to be those b such that

|Γ(b) ∩Ai|
|Γ(b)|

>
|Ai|
|A|

+ µ

By the property of the sampler, |B∗i | ≤ µ2|B| and hence
∑

i |B∗i | ≤
1
µ · µ

2|B| = µ|B|.
Therefore,

|E(Ai, Bi)| ≤ |B∗i |d + |Bi| · d
(
|Ai|
Dv

+ µ

)
=⇒

∑
i

|E(Ai, Bi)| ≤ d
∑
i

|B∗i | + dµ
∑
i

|Bi|+
∑
i

d · |Ai||Bi|
Dv

= dµ|B| + dµ|B|+
∑
i

d · |Ai||Bi|
Dv

= dDv

(
2µ+

∑
i

|Ai||Bi|
D2
v

)

= dDv

2µ+
∑

i:|Si|=1

|Ai||Bi|
D2
v

+
∑

i:|Si|>1

|Ai||Bi|
D2
v


Lets focus on the singleton sets first. That sum is clearly bounded by

∑
σ
|A(σ)||B(σ)|

D2
v

which

is precisely δv, the fraction of edges between A and B that are satisfied. Hence,

∑
i

|E(Ai, Bi)| ≤ dDv

2µ+ δv +
∑

i:|Si|>1

|Ai||Bi|
D2
v


≤ dDv

2µ+ δv +
∑

i:|Si|>1

2µDv · |Bi|
D2
v


= dDv (2µ+ δv + 2µ) = dDv(4µ+ δv)

10-14

And as mentioned earlier,
⋃
E(Ai, Bi) contains all the edges between A and B that are

satisfied and hence we are done.

Thus, the degree reduction procedure can be summarized as the following theorem.

Theorem B.5. For every µ > 0, there is a polynomial time algorithm to reduce δ-gap label-
cover instances I = (U, V,Σ1,Σ2,F) of average right-degree D to (4µ + δ)-gap label-cover
instances I ′ = (U, V ′,Σ1,Σ2,F ′) with right-degree 4/µ4.

10-15

	Introduction
	Decodable PCPs
	Attempted definition
	Modified definition
	dPCPs from the Zero-On-Subcube test

	Composition
	Robustness Analysis
	Fixing Parameters

	Alphabet Reduction
	Proof Degree Reduction via samplers

