
Limits of Approximation Algorithms 24 Apr, 2010

Problem Set 2

• Due Date: 13 May (Thurs), 2010

• It is recommended that you try to solve all the exercises and problems, but you need
to submit the writeup for only 5 of the 8 problems (note the length of the problem
statement is not reflective of the difficulty of the problem!).

• Collaboration is encouraged, but all writeups must be done individually.

• Indicate names of all collaborators.

• Refering sources other than the lecture notes is discouraged, since for some of the
problems a Google search will reveal the solution. But if you do use an outside source
(text books, lecture notes, any material available online), do mention the same in your
writeup.

Notation:

• F is a field of size q

• Smk is the set of affine subspaces of dimension k in Fm.

• Pm,d is the set of m-variate degree d polynomials

Exercises

1. [Schwartz-Zippel]

If p : Fm → F is a non-zero m-variate polynomial of total degree at most d, show that

Pr
x∈Fm

[p(x) = 0] ≤ d

|F|
.

2. [Orthogonality via Schwartz-Zippel]

In class, we showed that Ex∈Fm [χα(x)] = 0 for α 6= (0, 0, . . . , 0) where χα’s are the
characters defined as χα(x1, . . . , xm) = (−1)

∑
αixi . Give an alternate proof using

Schwartz-Zippel to the polynomial χα.
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Problems

1. [linearity test of 3 functions]

Consider the following modification of the BLR-linearity test towards testing linearity
of 3 functions f, g, h : {0, 1}n → {1,−1} simultaneously.

BLR-3-Testf,g,h : “ 1. Choose y, z ∈R {0, 1}n independently

2. Query f(y), g(z), and h(y + z)

3. Accept if f(y)g(z)h(y + z) = 1. ′′

Clearly, if the three functions f, g, h are the same linear function, then the above test
accepts with probability 1. Suppose one of the three functions f, g, h (say f) and its
negation (i.e., −f) is δ-far from linear (this means maxα |f̂α| ≤ 1− 2δ), show that

Pr
y,z

[BLR-3-Testf,g,h rejects ] ≥ δ.

[Hint:TheCauchy-Schwarzinequality(∑aibi)
2
≤(∑a2

i)·(∑a2
i)maycomeuseful.]

2. [recycling queries in linearity test]

In lecture, we analyzed the soundness of the BLR-Test to show that if f is (1/2−ε)-far
from linear, then the test accepts with probability at most 1/2 + ε. If we repeat this
test k times, we obtain a linearity test which makes 3k queries and has the following
property: if f is (1/2 − ε)-far from linear, then the test accepts with probability at
most (1/2 + ε)k = 1/2k + δ. Thus every additional 3 queries improves the soundness
by a factor of 1/2. In this problem, we show that this can be considerably improved.

Assume that both f and−f are (1−ε)/2-far from linear (i.e., maxα |f̂α| ≤ ε). Consider
the following linearity test (parameterized by k).

Testfk : “ 1. Choose z1, z2, . . . , zk ∈R {0, 1}n

2. For each distinct pair (i, j) ∈ {1, . . . , k}
Check if f(zi)f(zj)f(zi + zj) = 1.

3. Accept if all the tests pass. ”

Observe that this test makes at most k +
(
k
2

)
queries. We will show below that

the soundness of the test is roughly 2−(k2), thus showing that every additional query
improves the soundness by a factor of 1/2 (almost).

Assume that both f and −f are (1− ε)/2-far from linear.
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(a) Show that the acceptance probability of the above test is given by

Pr[acc] = Ez1,...,zk

∏
i,j

(
1 + f(zi)f(zj)f(zi + zj)

2

)
=

1

2(k2)
·
∑

S⊆([k]2 )

Ez1,...,zk

 ∏
(i,j)∈S

f(zi)f(zj)f(zi + zj)


(b) Consider any term in the above summation corresponding to a non-empty S

(i.e., Ez1,...,zk
[∏

(i,j)∈S f(zi)f(zj)f(zi + zj)
]
). Suppose (1, 2) ∈ S. Show that

Ez1,...,zk
[∏

(i,j)∈S f(zi)f(zj)f(zi + zj)
]

is upper bounded by Ez1,z2 [f(z1+z2)g(z1)h(z2)]

for some functions g, h : {0, 1}n → {0, 1}.

[Hint:Fixallthevariablesotherthanz1andz2suchthatthattheexpectationis
maximized.]

(c) Use the result of Problem 1 to conclude that the expression in the above (for

non-empty sums) is at most ε (i.e., Ez1,...,zk
[∏

(i,j)∈S f(zi)f(zj)f(zi + zj)
]
≤ ε

for non-empty S).

(d) Conclude that Pr[acc] is at most 2−(k2) + ε.

3. [Affine subspaces sample well]

In the proof of the low-degree test, we assumed that affine subspaces are good sam-
plers. In this problem, we will formally prove this statement.

Let A ⊂ Fm of density µ (i.e., |A| = µqm).

Vars∈Smk

[
|s ∩A|
|s|

]
≤ µ

q
.

Hence, conclude that

Pr
s∈Smk

[∣∣∣∣ |s ∩A||s|
− µ

∣∣∣∣ ≥ ε] ≤ µ

ε2q
.

4. [polynomial decoding: short list of polynomials]

Let A : Fm → F be any function (not necessarily a low degree polynomial). Let
p1, p2, . . . , pt : Fm → F be the list of all degree d polynomials such that Prx[A(x) =
pi(x)] ≥ δ. In other words, p1, . . . , pt is the list of all polynomials that have each
agreement at least δ with the function A. Assume δ ≥ 2

√
d/q. Prove that t ≤

2/δ. Hence, there are not too many low-degree polynomials that have considerable
agreement with two polynomials.

[Hint:Usethefactthattwolowdegreepolynomialagreeonatmostd/qfractionof
points(Schwartz-ZippelLemma)]
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5. [Interpolation from cliques of consistency graph]

In lecture, we defined the notion of a consistency graph G = (V,E), given a subspace
oracle A : Sk+1

k → Pk,d where V = Smk and E = {(s1, s2)|∀x ∈ s1 ∩ s2, A(s1)(x) =

A(s2)(x)}. Suppose there exists a clique W ⊂ V of size
(
2d+1
q

)
|V |, prove that there

exists a polynomial Q : Fm → F of degree 2d such that for eah w ∈ W , we have
Q|w ≡ A(w).

[Hint:UsethelargesizeofWtoshowthatthereexiststwosetsofdparallelhyperplanes
(i.e,affinespacesofdimensionk)inW.Interpolatealongthesehyperplanestoobtain
adegree2dpolynomialQ.UseSchwartz-ZippelrepeatedlytoarguethatQidentifies
withA(s)forallhyperplaness∈W]

6. [Degree reduction]

In lecture, we showed that if the plane-point low-degree test passes with with non-
significant probability γ, in other words

Pr
s∈Smk ,x∈s

[A(s)(x) = A(x)] ≥ γ,

then there exists a polynomial Q : Fm → F of degree at most 2d such that

Pr
x

[Q(x) = A(x)] ≥ γ2 − ε,

for some ε = mα(d/q)β. In this problem, we will show that the degree of the polyno-
mial Q can be reduced from 2d to d.

Suppose there exists a polynomial Q : Fm → F of degree δq for some 0 < δ < 1 and
furthermore,

Pr
s∈Smk

[Q|s ≡ A(s)] ≥ δ +
1

q
,

show that the degree of Q is in fact, at most d.

[Hint:Supposebycontradictionthisisnotthecase(i.e.,degree(Q)=D>d.Consider
anykdimensionalaffinesubspaces=z0+span{z1,z2,...,zk}forlinearlyindependent
z1,...,zk.Anypointinsisoftheformz0+∑αizi.ConsiderthecoefficientofαD

iin
thepolynomialP(α1,...,αk)=Q(z0+∑αizi).ShowusingSchwartz-ZippelLemma
thatwithhighprobabilitythiscoefficientisnotzero.Hence,withhighprobabilityQ|s
isadegreeDpolynomial.Contradiction]

7. [low degree testing to list of polynomials]

In lecture, we showed that if there is a list of low-degree polynomials that agrees with
the space oracle then low-degree test theorem is true. In this problem, we will show
the converse of this statement.

Suppose there exists a function f : (0, 1)→ (0, 1) such that the following is true.

“[Low Degree Test Theorem] For every function A : Fm → F and A : Smk → Pm,d that
satisfies

Pr
s,x

[A(s)(x) = A(x)] ≥ γ,
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we have
Pr
x

[A(x) = Q(x)] ≥ f(γ)

for some polynomial Q of degree at most d (end of Low Degree Test Theorem)”

(recall that we proved the above in lecture for the function f(γ) = γ2 − ε)
Let ε0 =

√
d/q and δ ∈ (ε0, 1). Set δ′ = f(δ − ε0) − ε0 ≥ 2ε0. Prove that for any

function B : Fm → F, there exists a list of at most t ≤ 2/δ′ polynomials Q1, . . . , Qt :
Fm → F of degree at most d such that

Pr
s∈Smk ,x∈s

[B(s)(x) 6= B(x) ∧ (∃i, Qi|s ≡ B(s))] ≥ 1− δ.

You may assume the result of Problem 4. We will prove the above statement as
follows. Suppose for contradiction that the statement if false.

Let Q1, Q2, . . . , Qt be the list of polynomials that have at least δ′ agreement with B.
By Problem 4, t ≤ 2/δ′. Suppose the statement was false. Consider the following 3
events for a random s ∈ Smk and x ∈ s.

• C : B(s)(x) = B(x)

• P : ∃i ∈ [t], B(x) = Qi(x)

• Q : ∃i ∈ [t], B(s) ≡ Qi|s

(a) Show that Pr[C ∧ S̄] > δ. S̄ denotes the event “not S”

(b) Argue using Schwartz-Zippel Lemma, Pr[C ∧ P̄ | 6 S] ≤ ε0.
(c) Conclude that Pr[C ∧ P̄ ] > δ − ε0.
(d) Construct a new oracle B′ : Fm → F as follows: let Q′ be an arbitrary polynomial

of degree exactly d+ 1. Set B′(x) to be Q′(x) on all points x that satisfy P and
B(x) otherwise. Let the space oracle of B′ be the same as that of B. Show that

Pr
[
B′(s)(x) = B′(x)

]
> δ − ε0.

(e) Conclude from the low-degree test theorem that there exists a polynomial Q of
degree at most d such that Pr[Q′(x) = Q(x)] ≥ f(δ − ε0). Argue that Q and Q′

are distinct polynomials and hence,

Pr[B′(x) = Q(x) ∧B′(x) 6= B(x)] ≤ Pr[Q′(x) = Q(x)] ≤ d+ 1

q
≤ ε0.

(f) Argue that Pr[B(x) = Q(x) = B′(x)] ≥ f(δ − ε0)− ε0 = δ′.

(g) Conclude from above that there exists a i ∈ [t] such that Q ≡ Qi (i.e., Q and Qi
are identical polynomials)

(h) Conclude that δ′ ≤ Pr[B(x) = Qi(x) = B′(x)] ≤ Pr[Q′(x) = Q(x)] ≤ ε0, which
is a contradiction.
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8. [Fourier interpretations]

Let f : {0, 1}n → R and write the Fourier expansion of f , f =
∑

S⊆[n] f̂(S)χS where
χS : {0, 1}n → {−1, 1} is defined as

χS(x) = (−1)
∑

i∈S xi ,

and f̂ : 2[n] → R is defined as follows:

f̂(S) = 〈f, χS〉 = E
[
f(x)(−1)

∑
i∈S xi

]
.

All probabilities and expectations in this question are with respect to the uniform
product probability distribution on {0, 1}n.

(a) Given a set S ⊆ [n], define f≤S : {0, 1}n → R by

f≤S =
∑
T :T⊆S

f̂(T )χT .

Note that f≤S(x) actually only depends on the bits of x in S; call these bits xS .
Show that f≤S(xS) is equal to the expected value of f conditioned on the bits
xS (i.e., f≤S(xS) = Ey∈{0,1}n [f(y)|yS = xS ] (The expectation is thus over the
bits of x not in S.

(b) Suppose f ’s range is {−1, 1}; i.e., f is a Boolean-valued function. We define the
influence of the ith coordinate on f to be Infi(f) = Prx[f(x) 6= f(x(i))], where
x(i) denotes the string x with the ith bit flipped. This measures how sensitive f
is to flipping the ith coordinate. Show that

Infi(f) =
∑
S:i∈S

f̂(S)2.

(c) Again, suppose f is a Boolean-valued function. f is said to be monotone if
f(x) ≤ f(y) whenever x ≥ y. (By x ≥ y we mean xi ≥ yi for all i.) For example,
the AND function which is given AND(x, y) = 1 − 2xy is monotone. Similarly,
OR, and Majority are also monotone functions; Parity is not monotone.

Show that if f is monotone then Infi(f) = f̂({i}) for each i ∈ [n].

(d) Once more, suppose f is Boolean-valued. Suppose we pick x ∈ {0, 1}n at random
and then form a string y ∈ {0, 1}n as follows: for each i = 1 . . . n independently,
we set yi = xi with probability ρ and set yi to be a uniformly random bit with
probability 1− ρ. The noise stability of f at ρ is defined to be

Stabρ(f) = 2 Pr[f(x) = f(y)]− 1,

a number in the range [−1, 1]. This measures in some way how stable f is when
you flip about 1

2(1− ρ) input bits. Show that

Stabρ(f) =
∑
S⊆[n]

f̂(S)2ρ|S|.

6


