
Communication Complexity 26 Aug, 2011 (@ IMSc)

1. Introduction to communication complexity

Lecturer: Prahladh Harsha Scribe: Sajin Koroth

1.1 Yao’s two-party communication model

The model consists of two parties [Yao79], Alice and Bob, holding inputs x ∈ X and y ∈ Y
respectively. They exchange messages in order to compute a function f : X×Y → {0, 1} at
(x, y); their goal is to do this with minimal amount of interaction, which is some measure
of the communication between the two parties and will usually be the total number of bits
exchanged by the parties. Figure 1 illustrates this model. The communication between the
two parties is guided by a protocol, which specifies how each message sent depends on the
input and the messages received previously. In the definition below, we assume that Alice
(who has x) sends the first message.

Definition 1.1 (Protocol). Messages: A k-round protocol π in the two-party communi-
cation model is a sequence of functions 〈M1,M2,M3, . . . ,Mk〉 where

Mi : X × ({0, 1}+)i−1 → {0, 1}+ if i is odd;

Mi : Y × ({0, 1}+)i−1 → {0, 1}+ if i is even.

(Later in our discussion, we will also tacitly assume that the messages sent by the
two parties to be prefix free.) On input x and y, the communication under the pro-
tocol proceeds as follows. In the first round, Alice sends M1(x); in the second Bob
sends M2(y,M1(x)). In general, in round i = 1, 2, . . . , k, if i is odd Alice sends
Mi(x,M1,M2,M3, . . . ,Mi−1), and if i is even, Bob sends Mi(y,M1,M2,M3, . . . ,Mi−1).
At the end, a referee declares the output by looking at the transcript alone.

Correctness: The protocol is said to compute f : X × Y → {0, 1} if on all inputs (x, y) ∈
X × Y , the output is f(x, y).

Transcript: For a protocol π and an input (x, y), the transcript π(x, y) is the sequence
of messages 〈M1(x),M2(y,M1), . . . ,Mk(· · ·)〉 exchanged by the two parties. The total
number of bits exchanged by Alice and Bob, which we refer to as the length of the
transcript, is |π(x, y)| =

∑k
i=1 |Mi(· · ·)|.

1.1.1 The protocol tree

It will often be convenient to visualize the protocol as a binary decision tree. This tree is
constructed as follows. Each internal node is labelled by a function of the form fA : X →
{0, 1} or gB : Y → {0, 1}. The leaves are labelled 0 or 1. The computation on this tree
starts at the root, and proceeds down, as in decision trees, to a leaf. When at an internal

1-1

Figure 1: Yao’s two party model of communication

Figure 2: An example protocol tree

node v, the function labeling v is computed (by Alice if it is a function of x and by Bob if
it is a function of y). Based on the result, the computation moves to the left or right child.
The output of the computation is the label stored at the leaves. It is straightforward to
translate a protocol as defined above into a tree, and also turn any such tree into a protocol.
In particular, the transcript corresponds to the concatenation of function values computed
at the intermediate internal nodes; |π(x, y)| is the length of the path from the root to leaf
reached at the end. Figure 1.1.1 illustrates an example protocol tree.

1.2 Communication complexity

The communication complexity of a function is a measure of its hardness when the inputs
are distributed among Alice and Bob. This measure focusses only on the cost associated
with exchanging the information and disregards the computational effort Alice and Bob
need to invest in computing their messages.

Definition 1.2 (Deterministic communication complexity). The deterministic communi-

1-2

cation complexity of a function f : X × Y → {0, 1} is

D(f) = min
π

max
(x,y)
|π(x, y)|,

where π ranges over all protocols that computer f , and (x, y) ranges over X × Y .

Equality: The n-bit equality function, EQn : {0, 1}n×{0, 1}n → {0, 1}, takes the value 1
on input (x, y) iff x = y.

It is easy to see that D(EQn) ≤ n+1: Alice sends x over to Bob, who then tell Alice the
result. In fact, all functions on n-bit inputs can be computed in this manner in two rounds
with n+ 1 bits of communication. Can we do significantly better for EQn?

Theorem 1.3. D(EQn) ≥ n

Proof. Fix a protocol for EQn and consider its protocol tree.

Claim 1.4. The tree has at least 2n leaves.

Note that the theorem follows immediately from this claim, because a binary tree with at
least 2n leaves must have depth at least n.

To justify the claim, we will show a set of 2n inputs, on no two of which can the
computation reach the same leaf. Consider,

F = {(x, x) : {0, 1}n}.

Every input in F leads to a leaf labelled 1. The key observation is that if (x1, y1) and
(x2, y2) lead to a leaf `, then (x1, y2) and (x2, y1) also lead to `. This is because the function
evaluated at each node in the protocol tree depends on one input (either x or y) at a time.
Now, if x 6= y, the input (x, y) must lead to a leaf labelled 0. Thus, if x1 6= x2, then (x1, x1)
and (x2, x2) lead to different leaves. This justifies the claim.

Disjointness: The function DISJn : {0, 1}n × {0, 1}n → {0, 1} is defined as follows. We
view the input strings x and y as characteristic vectors of sets X and Y . The function
DISJn(x, y) = 1 iff X ∩ Y = ∅.

Theorem 1.5. D(DISJn) ≥ n.

Proof. The proof is similar to the one above. We will show that the protocol tree has at
least 2n leaves by showing 2n inputs all of which must lead to distinct leaves. Consider

F = {(x, x) : x ∈ {0, 1}n},

where x is the bit-wise complement of x. Note that if x is the characteristic vector of x,
then x is the characteristic vector of the complement of X, which we denote by X. We
claim that no two elements of F lead to the same leaf. Let (x1, x1) and (x2, x2) both lead to
the same leaf `. Clearly, ` must be labelled 1. Then, as argued above (x1, x2) and (x2, x1)
lead also lead to `. Let x1 be the characteristic vector of X1 and x2 be the characteristic
vector of X2. Then X1 ∩X2 = ∅, implying X1 ⊆ X2. Similarly, X2 ⊆ X1. Thus, X1 = X2,
implying x1 = x2. It follows that distinct elements of F lead to distinct leaves.

1-3

Figure 3: Viewing f : {0, 1}n × {0, 1}n → {0, 1} as a 2n × 2n matrix

Decomposition into monochromatic rectangles: The argument used above is rather
general and can be applied to other settings. Associate with the function f a 2n×2n truth-
table matrix, Mf where Mf [x, y] = f(x, y) (see Figure 1.2). Fix a protocol π for f . Observe
that if the transcripts π(x, y) and π(x′, y′) are the same, say T then the transcript π(x, y′)
and π(x′, y) ought to equal T . Hence for each transcript T of π (corresponding to a leaf ` in
the protocol tree), the inputs RT = {(x, y)|π(x, y) = T} form a monochromatic(the function
value is same throughout the points in the rectangle) combinatorial rectangle RT = AT×BT
where

AT = {x|∃y, π(x, y) = T}
BT = {y|∃x, π(x, y) = T} .

Hence if at least t monochromatic combinatorial rectangles are needed to tile the truth-table
matrix Mf , then the protocol must produce at least t distinct transcripts. The correspond-
ing protocol tree must then have at least t distinct leaves, and depth at least log t.

1.3 Randomized Communication Complexity

We have seen that both EQn and DISJn has a very high deterministic communication com-
plexity. Can randomness help? In randomized communication protocols, the two parties
in addition to their inputs can use a random string to determine their messages. There are
two models of randomized communication complexity, based on whether or not the string
RA used by Alice and the string RB used by Bob are the same.

Public coin model: In this model RA and RB, and we refer to them by just R. We may
think of R being generated by shared coin tosses whose outcomes are visible to both
parties.

Private coin model: In this mode RA and RB are generated independently, and neither
Alice nor Bob is aware of the outcome of the other’s coin tosses.

This changes our model as follows. Alice and Bob receive their inputs, x and y; they also
receive their random strings RA and RB (identical or independently generated). Then, in

1-4

any computation where Alice was to use x, she may now use (x,RA); similarly, Bob’s input y
is now replaced by (y,RB). In particular, the transcript is now a function of (x, y,RA, RB);
the referee who declares the output based on the transcript is allowed access to RA and RB.
Furthermore, we say that a protocol computes a function f , if for all x and y

Pr
RA,RB

[π(x, y;R) computes f correctly] ≥ 3

4

Note that 3
4 was selected arbitrarily, any constant greater than 1

2 would lead to a similar
randomized complexity measure. Also note that the coins R, RA and RB could follow
any distribution fixed by the protocol as we allow Alice and Bob to be computationally
“unbounded”; if their distribution is left unspecified, we will assume that these strings are
chosen uniformly from their domain, often of the form {0, 1}r.

Definition 1.6 (Randomized communication complexity). We have two measures based on
the model for randomness.

Public coin protocols: Rpub
1/4(f) = min

π
max
(x,y,R)

|π(x, y;R)|, where π ranges over public coin

protocols for f with shared random string R.

Private coin protocols: Rprv
1/4(f) = min

π
max
(x,y,R)

|π(x, y;RA, RB)|, where π ranges over pri-

vate coin protocols for f with respective random strings RA and RB for Alice and
Bob.

Let us re-examine the communication complexity of EQn and DISJn in this model.

Theorem 1.7. Rpub
1/4(EQn) = O(1).

Proof. The proof is constructive. We will provide a randomized protocol for computing
EQn. The protocol is as follows:

1. The public coin is tossed n times to get a bit string of length n, say r, which is
available to both Alice and Bob.

2. Alice sends
∑n

i=1 xiri mod 2 to Bob. and sends the

3. Bob sends back
∑n

i=1 yiri mod 2. The output is 1 if Alice’s and Bob’s bits are the
same and is 0 otherwise.

If x = y, then the protocol makes no error. If x 6= y, then the protocol errs if
∑n

i=1 xiri =∑n
i=1 yiri (mod 2), that is, if

∑n
i=1(xi − yi)ri = 0((mod 2)). Since r is chosen at random,

this can happen with probability at most 1
2 . Running the protocol for two different r’s

would ensure that the probability of error is at most (12)2 = 1
4 .

Clearly, only four bits are exchanged.

Theorem 1.8. Rprv
1/4(EQn) = O(log n)

1-5

Proof. Alice and Bob use the following matrix.
10 11 12 · · · 1n−1

20 21 22 · · · 2n−1

...
...

...
...

...
L0 L1 L2 · · · Ln−1

 ,

where L = 4n, and they also agree in advance on a prime number p such that L ≤ p ≤ 2L.
Note that no two rows of the matrix are equal modulo p. The protocol is the following

1. Alice picks a random number i, 1 ≤ i ≤ n and selects the i-th row (i0, i1, i2, . . . , in−1)
from the matrix.

2. Alice then sends Bob the value i and the dot product of the i-th row with x, that is,∑n−1
j=0 xji

j mod p.

3. Bob computes
∑n−1

j=0 xji
j mod p and tells Alice if it agrees with what Alice sent. The

bit sent by Bob is the outcome of the protocol.

When x = y, there can be no error. Suppose x 6= y. We need to estimate the probability
that

n−1∑
j=0

xji
j =

n−1∑
j=0

xji
j (mod p)

for i chosen uniformly at random from [L], that is, i is the root of the polynomial P (z) =∑n−1
j=0 (xj − yj)zj over Fp. Now, P (z) is a non-zero polynomial (for at least one value of j

we have xj − yj 6= 0 (mod p)) of degree at most n− 1. It can have at most n− 1 roots in
Fp. Hence,

Pr[Error] = Pr
z∈[L]

[P (z) = 0] ≤ n− 1

4n
≤ 1

4

Note that Alice sends O(log n) bits to Bob and Bob sends one bit to Alice.

Exercise: Rprv
1/4(EQn) = Ω(logn).

1.3.1 Randomized protocols for DISJn

We saw earlier that both EQn and DISJn have deterministic communication complexity of
Ω(n), and we just saw that randomness (with a little error) helps for EQn. The following
deep result of Kalyanasundaram and Schnitger shows that such savings are not possible for
the disjointness function.

Theorem 1.9 (Kalyanasundaram-Schnitger [KS92], Razborov [Raz92]).

Rpub
1/4(DISJn) = Θ(n).

We will prove this theorem later in the course.

1-6

References

[KS92] Bala Kalyanasundaram and Georg Schnitger. The probabilistic communication com-
plexity of set intersection. SIAM J. Discrete Math., 5(4):545–557, 1992. (Preliminary version
in 2nd Structure in Complexity Theory Conference, 1987). doi:10.1137/0405044.

[Raz92] Alexander A. Razborov. On the distributional complexity of disjointness. Theoretical
Comp. Science, 106(2):385–390, 1992. doi:10.1016/0304-3975(92)90260-M.

[Yao79] Andrew Chi-Chih Yao. Some complexity questions related to distributive computing
(preliminary report). In Proc. 11th ACM Symp. on Theory of Computing (STOC), pages
209–213. 1979. doi:10.1145/800135.804414.

1-7

http://dx.doi.org/10.1137/0405044
http://dx.doi.org/10.1016/0304-3975(92)90260-M
http://dx.doi.org/10.1145/800135.804414

	Yao's two-party communication model
	The protocol tree

	Communication complexity
	Randomized Communication Complexity
	Randomized protocols for DISJn

