Communication Complexity August 30, 2011

Lecture 3
Lecturer: Prahladh Harsha Scribe: Abhishek Bhrushundi

Recap

Last time we saw how the depth of monotone formulas for a function can be lower bounded via
communication complexity bounds. Specifically, we were able to show that Depth™(Match) = Q(n),

where Match : {0, 1}(2) — {0,1} is a function that computes whether a given graph (represented by
the characteristic vector of the edge set) has a perfect matching, and Depth™(f) denotes the depth
of a monotone formula computing f. We shall see more such bounds later on in the course. For
example, we shall see

1 if there is a path from s to t in G

Theorem 1 Let STCONN(G, s, t) = ,
0 otherwise

Then, Depth™ (STCONN) = Q(log?(n))
It is known that Depth(STCONN) = O(log? n).

Nondeterministic communication complexity

In this model, Alice and Bob are allowed to make private guesses, and at any point of time, their
message strings, apart from being dependant on previously sent messages, can also be dependant
on the guesses. Note that, since we allow Alice and Bob to be computationally unbounded, their
respective private guesses can be arbitrarily long. For a given function f: X x Y — {0,1}, we say
P is a nondeterministic protocol if

1. For all (z,y) such that f(z,y) = 1, there is a guess (or rather a pair of private guesses for
Alice and Bob) such that the protocol outputs 1.

2. For all (z,y) such that f(z,y) = 0, no matter what guesses Alice and Bob make, the protocol
always outputs 0.

lifx#y

. . A straight-forward nondetermin-
0 otherwise

Example : Let us look at the function EQ,, =
istic protocol for the function is the following:
1. Alice guesses a number between 1 and n (let’s call it i), and sends it over to Bob.
2. Bob sends over the i bit of y to Alice.
3. Alice outputs 1, if x; # y;, otherwise she outputs 0.

Clearly, if f(x,y) = 1, then there is some position (and hence some guess that Alice can make) at
which z; # y;, and the protocol outputs 1, otherwise no matter what position Alice choses, z; = y;,
and the protocol outputs 0.

This yields N(EQ,,) < O(log(n)). Note that N(f) denotes the nondeterministic communication
complexity of f.

3-1

Nondeterminism and Covers

Recall that in case of a deterministic communication complexity protocol P, the protocol partitions
M (the truth table) into monochromatic rectangles, and every monochromatic rectangle corresponds
to a unique transcript or a unique leaf in the protocol tree. It is natural to ask whether such a notion
of rectangles exists in the case of nondeterministic protocols.

Defining rectangles in the nondeterministic case : Let us try and define a suitable notion
of rectangles in the case of nondeterministic protocols. Consider a protocol P and let (z,y) and
(2',y') be two input pairs with f(z,y) = f(2’,y’) = 1 such that there exist nondeterministic guesses
for Alice and Bob in both cases (say (21, 21) for input (z,y), and (22, 25) for input (2/,y’), such that
P(z,y,z1,2)) = P(&',y,22,25) = 1 and 7(z,y, 21,2]) = w(a’,y', 22, 25). Here P(z,y, z,2") denotes
the output of the protocol on input (x,y) when Alice guesses z, and Bob guesses z’. In a similar
spirit, m(z,y, z, z’) denotes the transcripts for these guesses. Clearly, when the inputs are (z,y’) and
(2',y), and the guesses are (21, 25) and (z2, 2]) respectively, we get the same transcipt and output
(in this case 1). Thus, even (z,y’) and (2/,y) are points where f evaluates to 1, and we say that
(x,y), (2',y"), (a',y) and (z,y’) are all on a 1-rectangle.

Definition 2 (1-rectangle) A l-rectangle (say R) for a nondeterministic protocol P computing f
consists of all inputs (x,y) such that:

1. f(z,y) =1

2. There is a transcript T such that ¥V (x,y) € R, there exist nondeterministic guesses z,z' such
that w(x,y,2,2") =T, and P(z,y,z,72) = 1.

Notice that 1-rectangles in the nondeterministic case could be possibly overlapping. Together, all
the 1-rectangles of a valid nondeterministic protocol for f must cover the 1’s in M, leading to what
we call a 1-cover.

Can we define 0-rectangles in a similar manner? : Unfortunately, the above argument fails
when we try to look at points (z,y) and (2’,y’) where f. evaluates to 0. The same argument as
above goes through till the point we prove that (z,3’) and (2’,y), given the guesses (z1,25) and
(21, z2) respectively, have the same transcript and output (0 in this case). Note, however, this does
not say anything above the value of f at these points: there could be some other nondeterministic
guess for which the protocol, on input (z,%’), could output 1 (Similar things might happpen on
input (2’,y)), which would imply that f(z,y’) (and possiblly f(z',y)) is 1. Thus, the notion of
O-rectangles, defined in the above spirit, does not make much sense. Note that points on which f is
zero are never contained in 1-rectangles.

Covers and nondeterministic communication complexity : Let C'(f) denote the size of the
smallest cover needed to cover all the 1s in My, where a cover may consist of possibly overlapping
rectangles. We claim the following:

Lemma 3 N(f) = log(C(f))

Proof We first claim that N(f) < log(C*(f)) i.e. if Alice and Bob have a 1-cover consisting of
CL(f) rectangles, then by exchanging log(C(f)) bits, they can compute f(z,y). Following is the
protocol:

1. A priori, both Alice and Bob have a 1-cover with all the rectangles numbered.

2. Alice nondeterministically chooses a rectangle from the cover which intersects the row corre-
sponding to input z. Let’s say the index of this rectangle is k. If there is no such rectangle,
Alice outputs 0.

3-2

3. Alice sends k over to Bob. This takes log(C*(f)) bits.

4. Bob checks if his input lies in the rectangle, and outputs 1 if it does, and 0 otherwise. (We’ll
ignore this step when counting the total number of bits communicated. In case we do include
this bit, we should claim N(f) € ©(log(C*(f)))

Clearly, when f(x,y) = 1, there is some rectangle in the 1-cover, the index of which Alice can guess,
leading to a correct computation. On the other hand, if f(x,y) = 0, no rectangle will ever contain

(z,y).

We now show N(f) > log(C(f)), or equivalently, given a protocol P which uses N(f) bits of
communication, we can construct of a 1-cover of size at most 2V(). As argued above, two inputs
for which f evaluates to 1 lie in the same 1-rectangle if for each of the inputs there is some guess
that leads to the same transcript and output equal to 1. Clearly, in case of a valid protocol, all
points with f(z,y) = 1 are covered by some l-rectangle. Given the fact that there are at most
2N(f) transcripts, we can always construct a 1-cover induced by P is of size at most 2V(). Let’s
see why this is true. Suppose there were 2V(/) 4+ 1 I-rectangles in a 1-cover. By the piegon-hole
principle, there are two distinct 1-rectangles, say Ry and Ra, which have the same transcript T (a
transcript which has the final output as 1). Now, for all points (x,y) € Ry U Ra, there is some guess
for which the protocol follows transcript 7. But this is exactly the definition of a 1-rectangle, and
it follows that there is a 1-rectangle which contains R; U R,. Thus, we can replace R; and Rs by
this rectangle, reducing the number of rectangles, yet maintaining the covering property. l

In light of the above discussion, it is easy to see that the fooling set argument can be used to give
a lower bound for FQ, even in the nondeterministic'case. For f = EQ,, D(f) = Q(n), N(f) =
Q(n), and N(f) = Q(log(n)). A natural question to ask is how does deterministic communication
complexity of a function f connect to its nondeterministic counterparts? Can it happen that both

N(f) and N(f) are small, but D(f) is large? We shall now addresses this question.

Relating D(f), N(f) and N(f)
We prove the following theorem:
Theorem 4 Let f: S x T — {0,1} be a function; then D(f) < O(N(f)N(f)).

We present both, an algorithmic proof, and a combinatorial proof for the above.

Algorithmic proof for theorem 4 : Suppose Alice and Bob have the 1-cover corresponding to
a nondeterministic protocol for f, and a 0-cover corresponding to a protocol for f, and they want to
compute f(z,y). As in the proofof Lemma 3, they want to determine which rectangle their input
lies in (a O-rectangle or a 1-rectangle?) to find out f(z,y). The idea is that, in each round, Alice
and Bob communicate O(log(C'(f))) bits and kill the number of potential O-rectangles in which
their input might lie by half. This easily gives that the number bits of communication required is
at most O(log(C(£)) 1og(C°(f))) = O(N (/)N (f)).

Following is the protocol:
1. We begin by assuming that all O-rectangles are “alive”.

2. Alice considers all the O-rectangles are alive (this is done by updating the list suitably, if she
has recieved a new rectangle name from Bob). If there is no 0-rectangle alive that intersects
row z, Alice outputs 1.

3-3

3. In case, there is at least one O-rectangle alive intersecting row x, Alice tries to find a 1-rectangle
that intersects row x and is disjoint from at least half of the alive O-rectangles on the rows.
If such a l-rectangle is found, Alice sends its number to Bob, otherwise Alice sends FAIL to
Bob. The control now passes to Bob.

4. Let us look at the case when Bob actually recieves an index of a rectangle from Alice (call the
rectangle R). In this case, Bob eliminates all the O-rectangles that are disjoint from R. If there
is no O-rectangle alive intersecting the column y, Bob outputs 1. Otherwise Bob finds a 1-
rectangle that intersects column y, and is disjoint from more than half of the alive O-rectangles
on the columns. If such a rectangle is found, Bob sends its index to Alice, otherwise Bob send
FAIL to Alice, and passes control to her.

Why does the above protocol terminate? Even if it does, why should it output the correct value? A
few observations are in order to shed some light on the correctness of the protocol:

1. If f(z,y) = 0, the O-rectangle containing (z, y) is alive throughout the protocol. This is because
no matter what 1-rectangle intersecting x or y you pick at any stage, it will never be disjoint
from this O-rectangle.

2. If f(x,y) = 1, then the l-rectangle containing (z,y) is disjoint with at least half of the 0-
rectangles on either the rows or the columns. This follows from the fact that a 1-rectangle is
completely disjoint from all 0-rectangles.

Observation 2 implies that there can never be two consecutive F'AI L. communications. Thus, in the
worst case, every second communication is an index of some rectangle, which leads to the number
of O-rectangles being slashed by half, thus bounding the number of rounds of communication by
O(log(C°(f))). Since the amount of communication sent in every round is at most O(log(C(f))),
we have that D(f) < O(log(C°(f))log(C(£)))-

Combinatorial proof for theorem 4 : Let C¥(g) denote the least number of leaves in a protocol
(deterministic) tree for a boolean function g or, equivalently, the number of rectangles in the smallest
partition for M, given by any protocol for g. Let L(k,l) denote the maximum of C¥(g) over all
boolean functions g such that G%g) <1, C(g) < k.

Consider an optimal cover for f. Let R be a specific 0-rectangle in the cover. We assume that
greater than % 1-rectangles share no row with R = S x T (if this is not the case, greater than %
1-rectangles share no column with R, and the proof that follows can be suitably modified). Now
following is a protocol for f:

1. Alice checks if € S. If this is the case, the search space now becomes S x Y (assuming
f: X xY — {0,1}). This would mean that the number of 1-rectangles has reduced by half.

2. Otherwise, x ¢ S, in which case the search space becomes S x Y, and the number of O-rectangles
goes down by 1.

The two disjoint cases give us L(k,1) < L(%,1)+ L(k,1—1). It is not hard to see that the recurrence

solves to L(k,l) = (lﬂg%lgc)) < (I + 1)'°&*. Thus, we can conclude that the number of leaves in

a protocol tree for f is at most (I + 1) ~ exp(logl,log k). The only issue at hand is that the
protocol tree might not be a balanced one, making it hard for us to relate the number of leaves to
the depth. It is easy to show that any protocol can be converted into a “balanced” protocol (consult
assignment 1), for which the depth of the protocol tree is logarithmic in the number of leaves. This
tell us that D(f) < O(logllogk) = O(N(f)N(f)).

log k

3-4

The function DISJ;,,

Are there any tight examples for the inequality proved in the previous section? We now demonstrate

a function for which D(f) > Q(N(f)N(f)).

Let us look at the following situation: Alice has a set X C [n], and Bob has a set Y C [n], such that
|X|=1Y| =k << n. As in the disjointness function, we assume that Alice and Bob have have the
characteristic vectors for their respective sets. We then define:

Lif XNY =¢

DISJ ,, =
% {0 otherwise

We will show that
1. D(DISJy.) = Q(klogn)
2. N(DISJy) = O(k + loglogn)
3.V k, N(DISJ,) = O(logn)

3 has an easy protocol: Alice guesses an element in [n] that is present-in both XY, and sends its
index over to Bob, who checks if the element is in his set. If the sets‘are not disjoint, there is some
guess which will work, otherwise there is no such guess.

Plugging k = logn in the above, we get D(f) > Q(N(f)N(f)).

Showing N(DISJi,) = O(k +loglogn) : A trivial protol gives N(DISJy ;) < O(log (})) ~
O(klogn). We use hash functions to reduce the nondeterministic communication complexity. Sup-
pose there is a small family of hash functions H = {h : [n] — {0,1}} such that for all disjoint subsets
X,Y of [n] such that |X| = |Y| = k, there exists a hash function h € H such that h(X) = {0} and
h(Y) = {1} (Note that X and Y denote the sets of Alice and Bob respectively).

Let us say the size of such a family H is ¢t. Then, following is a nondeterministic protocol for
DISJyn:

1. Alice and Bob both know the family H, and index the functions in H.

2. Among all the functions h'€ H such that h(X) = {0}, Alice nondeterministically chooses one
(say h', and sends its index to Bob. If there is no such function, Alice outputs 0.

3. Bob computes h'(Y), and outputs 1 if »'(Y) = {1}, and 0 otherwise.

Clearly, if X and Y are disjoint, there is guess such that A'(X) = 0 and A'(Y) = 1, and the
communication complexity is logt.

We will use probabilistic method to show the existence of a family of size t = [22¥2k logn], which
completes the proof.

Let us pick H = {hy, ho, ... hy} at random, and fix two disjoint sets X and Y of size k. Now,

11 1
Pry[h separates X and Y] = SFoF = 3%k
1
Prp[h does separates X and Y] =1 — 2ok
1
Pry, by, b, [V, h; does separates X and Y] = (1 — QTk)t

2
1
Pry, hy....h, |3 disjoint X, Y, Vh € H, h does separates X and Y] = (Z) (1- ﬁ)t
—t
2k
< n exp(ﬁ)

3-5

It is not hard to see that choosing ¢ = [22¥2klogn] makes the above probability strictly less than
1. This gives N(DISJy) < O(k + loglogn).

It only remains to show that D(DISJy,) > Q(log (})). For this we appeal to the technique of
rank lowers bounds.

Rank Lower Bounds

Recall, that for matrices A and B over some field IF, we have that rank(A+B) < rank(A)+rank(B).
Let us look at the matrix My as a matrix with entries coming from R. Consider a partitioning of
My into monochromatic rectangles, and let Ry, Ra, ... R, be the 1-rectangles in the partition. Also,
let us define M;, for 1 < ¢ < m, to be the matrix which is of the same dimension as My, and is zero
everywhere except in R;. It is clear that My = >, M;. This tells us that rank(My) < >, rank(M;).
Clearly, the rank of all M;s is 1, and m is essentially the number of 1-rectangles in the partition.
This gives us

Observation 5 rank(M;) < # l-rectangles in any partition of My

We will now try to relate the O-rectangles in a partition to rank(My). We can do this by replacing
My in the above argument with M. This will give rank(My) < # O-rectangles in any partition of
M. Notice that My = J — My, where J is the all 1s matrix. This gives rank(My) < 1+rank(Mjy),
which in turn implies

Observation 6 rank(M;) —1 < # 0-rectangles in any partition of M;

Combining the two observations, and using the fact that D(f) > minimum # monochromatic
rectangles required to tile My, we get the important lemma

Lemma 7 D(f) > logy(2 x rank(My) — 1)
The following claim is left as an exercise:
Claim 8 T(MD[SJH) = 2”, T(MDIS’ka/) —3 (Z)

This immediately gives us what we were trying to prove in the last section: D(DISJ) = Q(klogn).
Again, one could ask if the above inequality is tight up a constant? It turns out this is not the case.
However, it is conjecture that there is a ¢ such that D(f) < (log(rank(My)))¢, for all functions f.
This is known as the polylog rank conjecture.

3-6

