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So far we were discussing the communication setting where Alice and Bob can send messages
alternately to compute a function. Today we discuss one-round communication, where Alice
sends a single message to Bob, and Bob computes the output from his input and the received
message. A naive protocol for this problem is that Alice sends her entire input and Bob
declares the output. Now the question is can we do better, especially if we allow randomness.
So we want a single short message that represents Alice’s input, which helps Bob to compute
the function correctly with high probability. We will use information theory to obtain lower
bounds for one-round communication problems.

9.1 One-round protocols and the Index Function

Definition 9.1. A one-round protocol is a protocol where Alice sends a message to Bob,
and then Bob announces the output. The one-round communication complexity of a function
f , denoted by D1(f), is the cost of the best deterministic one-round protocol for f . The
one-round randomized communication complexity of f , with public coin tosses and with
probability of error is at most ε, is denoted R1,pub

ε (f).

Definition 9.2. The Index fuction is defined as follows. Alice is given x ∈ {0, 1}n and Bob
is given i ∈ [n]. The goal is for Bob to find xi, i.e, the ith bit in x.

It is easy to see that D1(INDEX) ≤ n + 1. Alice sends x and Bob outputs xi.
Now the question is: can we do better? If not, does randomization helps? Clearly,
R1,pub

1/2 (INDEX) ≤ 1: Bob just guesses a random bit r and announces the value of r.

For every input x, i, the probability that r = xi is exactly 1/2.
So to understand whether randomness helps, we should consider error bounded away

from 1/2. We will look for protocols where for every input, the probability that the protocol

errs is at most 1/2− δ, where 0 < δ ≤ 1/2. It turns out that R1,pub
1/2−δ(INDEX) = Ω(δ2n).

To prove this, we need to build some background in information theory. Recall that to
prove a lower bound for a randomized protocol, we introduced distributional communication
complexity: the input is drawn from a distribution µ, and the protocol is deterministic, but
we allow error in ε-fraction of inputs weighted by µ. We have seen the following result.

Rpubε (f) ≥ max
µ

Dµ
ε (f)

This rsult also holds in the one-round setting. That is, if D1,µ
ε (f) denotes the one-round

communication complexity of f with respect to distribution µ and with error ε, then:

Claim 9.3. R1,pub
ε (f) ≥ maxµD

1,µ
ε (f).
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Proof. The randomized protocol is correct for every input with probability at least 1 − ε.
Therefore for each µ, the randomized protocol is correct with probability at least 1 − ε.
By the averaging argument, it is easy to see that there exist a random choice r such that
the randomized protocol using r as the “random” string gives the correct answer for 1− ε
fraction (weighted by µ) of inputs.

So to prove a lower bound for one-round randomized protocols, it is enough to prove a
lower bound for one-round distributional communication complexity for a suitably chosen
distribution µ. We will show that D1,uniform

1/2−δ (INDEX) = Ω(δ2n).

9.2 Information Theory

In information theory, entropy quantifies the amount of information in a message or the
amount of uncertainty associated with a message. Let X be a random variable that takes
value 1 with probability 1/2 and 0 with probability 1/2. Now the entropy associated with
X is 1 since X is equally likely to be 1 or 0. On the other hand, if X takes value 1 with
probability 1, then entropy is 0, since we can predict the value of X. What if X is neither
determined nor unbiased? One way to “measure” uncertainty or information is the following
setting.

Let Pr[X = 1] = p, and Pr[X = 0] = 1− p. Let Z1, Z2, ...Zn be independent, identically
distributed as X, 0-1 random variables. That is, for each i, Pr[Zi = 1] = p and Pr[Zi =
0] = 1− p. Let Z = Z1Z2...Zn be a message that Alice want to send to Bob. Clearly, n bits
suffice to reveal Z. How much can Alice compress the message? Here is one encoding. Alice
first sends k =

∑n
i=1 Zi as dlog2 ne bits. Then she sends an index pointing to the k-set in

some pre-fixed ordering on all size k subsets of [n]; such an index needs log
(
n
k

)
bits.

Length of encoding = dlog ne+

⌈
log

(
n

k

)⌉
E[Encoding Length] = dlog ne+

n∑
k=0

Pr[Z has k 1s] ·
⌈

log

(
n

k

)⌉

E[Fractional Encoding Length] =
1

n

(
dlog ne+

n∑
k=0

(
n

k

)
pk(1− p)n−k

⌈
log

(
n

k

)⌉)

lim
n→∞

E[Fractional Encoding Length] = lim
n→∞

1

n

n∑
k=0

(
n

k

)
pk(1− p)n−k

⌈
log

(
n

k

)⌉
When k is far from its expected value pn, the corresponding term above is vanishingly
small. For the terms where k is close to pn, using Stirling’s approximation for factorials,
we can show that the above quantity converges to p log 1

p + (1 − p) log 1
1−p . Thus there is

an encoding with this as the asymptotic cost per bit.
Shannon showed that aysmptotically this is the best that any encoding can achieve.

This leads to the following definition.

Definition 9.4. Let X be a 0-1 random variable with Pr[X = 1] = p. The Shannon entropy
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H(X) of X is defined as

H(X) = p log
1

p
+ (1− p) log

1

1− p

We often use notation H(p, 1− p) or even H(p) instead of H(X).
This generalizes to any discrete random variable. Let X be a discrete random variable

that takes N distinct values with probabilities p1, p2, ..., pN respectively.
Define Z1 be a 0-1 random variable as follows

Z1 =

{
0 if X = 1
1 otherwise

Now, conditioned on Z1 = 1 (that is, on X 6= 1), Z2 is a random variable taking N − 1
values with probabilities pi

1−p1 for all i ∈ {2, 3, ..., N}. So the entropy of X should be
H(X) = H(Z1) + Pr[Z1 = 1] ·H(Z2). Going with this intuition, we get

H(X) = H(Z1) + Pr[Z1 = 1].H(Z2)

= p1 log
1

p1
+ (1− p1) log

1

1− p1
+ (1− p1)

N∑
i=2

pi
1− p1

log
1− p1
pi

= p1 log
1

p1
+

(
N∑
i=2

pi

)
log

1

1− p1
+

N∑
i=2

pi log
1− p1
pi

=

N∑
i=1

pi log
1

pi

This is indeed how the entropy is defined:

Definition 9.5. Let X be a discrete random variable that takes N distinct values with
probabilities p1, p2, ..., pN . The entropy of X, denoted H(X) or H(p1, . . . , pN ), is defined as

H(X) =

N∑
i=1

pi log
1

pi
.

Observation 9.6. The uniform distribution on n values (denoted Un) has entropy log n:
H( 1

n ,
1
n , ...,

1
n) = log n.

In fact, the uniform distribution has the maximum possible entropy. To see this, we use
properties of concave functions.

Definition 9.7. A function f is concave if

∀x, y, ∀0 ≤ λ ≤ 1, f(λx+ (1− λ)y) ≥ λf(x) + (1− λ)f(y).

That is, the function at the weighted average of two points is at least as large as the weighted
average of the function at those points.

A function f is convex if −f is concave.
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Jensen’s inequality allows us to extend this to averages over arbitrarily large sets.

Jensen’s Inequality: For a concave function f ,

E(f(x)) ≤ f(E(x))

Claim 9.8. If X is a discrete random variable, and support(X) is the set of values X can
take with non-zero probability, then 0 ≤ H(X) ≤ log |support(X)|.

Proof. 0 ≤ H(X) is obvious (∵ pi log 1
pi
≥ 0 for 0 < pi ≤ 1 and pi log 1

pi
→ 0 as pi → 0).

Now we will prove H(X) ≤ log |support(X)|. Define a new random variable Z that take
value pi with probability pi, for each i.

H(X) =
N∑
i=1

pi log
1

pi

= EZ
(

log
1

Z

)
≤ log

(
EZ
(

1

Z

))
(By Jensen’s inequality, ∵ log is convcave)

= log
∑
i

Pr[Z = pi] ·
1

pi

= log(|support(X)|)

It follows that for a n-valued random variable X, H(X) ≤ log n. And the uniform
distribution achieves this bound. In fact, this is the only distribution with entropy log n;
all other n-valued distributions have entropy strictly less than log n.

We now consider the joint entropy of (possibly correlated) random variables X and Y .
Following the definition of entropy, we have

H(XY ) =
∑
x,y

Pr[X = x, Y = y] log

(
1

Pr[X = x, Y = y]

)
If X and Y are independent, we expect the uncertainty in XY or the joint entropy of
XY to be the sum of the individual entropies. If they are not independent, then the
situation can change. So we consider conditional entropy H(Y |X), that quantifies the
residual uncertainty in Y even after the value of X is known. Each fixed value x for X can
reduce some uncertainty in Y . The conditional entropy of Y is the residual uncertainty in
Y, averaged over all values x for X.

Definition 9.9. Let X be a random variable that takes values x1, x2, ..., xn with probability
p1, p2, ..., pn respectively, and let Y be a random variable that takes values y1, y2, ..., ym with
probability q1, q2, ..., qm respectively. Let Pr[X = xi, Y = yj ] = rij for i ∈ [n] and j ∈ [m].
The entropy of Y given X, is defined as

H(Y |X) = Ex
[
H(Y |X = x)

]
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Claim 9.10. H(Y |X) = H(XY )−H(X).

Proof.

H(Y |X) = Ex
[
H(Y |X = x)

]
=

n∑
i=1

piH
(
Y |X = xi

)
=

n∑
i=1

pi

m∑
j=1

Pr[Y = yj |X = xi] log
( 1

Pr[Y = yj |X = xi]

)
=

n∑
i=1

pi

m∑
j=1

rij
pi

log
( pi
rij

)
=

∑
i,j

rij log
( 1

rij

)
−

n∑
i=1

m∑
j=1

rij log
( 1

pi

)
=

∑
i,j

rij log
( 1

rij

)
−

n∑
i=1

pi log
( 1

pi

) (
∵

m∑
j=1

rij = pi

)
= H(XY )−H(X)

From the above, it is straightforward to see that

Observation 9.11. If X and Y are independent, then

H(XY ) = H(X) +H(Y )

H(Y |X) = H(Y )

Sanity check: Can H(Y |X) be more than H(Y )? It should not, because uncertainty in
Y cannot increase if we are given more information about another variable X. Formally,

Claim 9.12. H(Y |X) ≤ H(Y )
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Proof.

H(Y )−H(Y |X) = H(X) +H(Y )−H(XY )

=
∑
i

pi log
( 1

pi

)
+
∑
j

qj log
( 1

qj

)
−
∑
i,j

rij log
( 1

rij

)
=

∑
i,j

rij log
( rij
piqj

) (
∵ pi =

m∑
j=1

rij & qj =
n∑
i=1

rij

)
= Ez

[
log

1

Z

]
, where Z is a r.v with Pr[Z =

piqj
rij

] = rij

= Ez[− logZ]

≥ − logEz[Z] (∵ -log is convex)

≥ − log

[∑
ij

rij
piqj
rij

]
= − log 1 = 0

The expression for conditional entropy gives rise to the Entropy chain rule:

H(X1X2...Xn) = H(X1) +H(X2|X1) +H(X3|X1X2) + ....+H(Xn|X1X2...Xn−1)

Since conditional entropy cannot exceed unconditioned entropy, we get

Observation 9.13. H(X1X2...Xn) ≤
∑n

i=1H(Xi).

H(Y |X) can be less than H(Y ), because X may carry some information about Y . We
can quantify this amount of information carried as follows:

Definition 9.14. The Mutual Information between two variables X and Y , denoted I(X :
Y ), is defined as

I(X : Y ) = H(X)−H(X|Y )

= H(Y )−H(Y |X)

= H(X) +H(Y )−H(XY )

Mutual information between two variables is the reduction in the uncertainty of one
variable due to the knowledge of other.

Example 9.15. Let Z1, Z2, ...Z10 be the random variables associated with tossing an un-
biased coin 10 times. Let X = Z1...Z7, Y = Z6...Z10. Then H(X) = 7 and H(Y ) = 5,
while H(X|Y ) = 5 and H(Y |X) = 3. Thus the mutual information between X and Y is the
outcomes of the 6th and 7th tosses; I(X : Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X) = 2.

Claim 9.16. If X1, X2, ..., Xn are independent, then I(X1X2...Xn : Y ) ≥
∑n

i=1 I(Xi : Y )
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Proof.

I(X1X2...Xn : Y ) = H(X1X2....Xn) +H(Y )−H(X1X2...XnY )

=

(∑
i

H(Xi)

)
+H(Y )−

(
H(Y ) +

∑
i

H(Xi|X1X2...Xi−1Y )

)
=

∑
i

(
H(Xi)−H(Xi|X1X2...Xi−1Y )

)
≥

∑
i

(
H(Xi)−H(Xi|Y )

)
=

∑
i

I(Xi : Y )

Note: since the Xis are independent, we know that H(Xi|X1 . . . Xi−1) = H(X). But
this does not imply that H(Xi|X1 . . . Xi−1Y ) = H(X|Y ). For instance, if X1 and X2 are
independent and Y = X1⊕X2, then H(X1|X2) = H(X1) = 1, but H(X1|X2Y ) = 0 because
X2 and Y determine X1. This is why in the proof above we can only claim an upper bound,
not an equality.

Finally, we show that entropy itself is a concave function.

Claim 9.17. Entropy is concave.

Proof. First, let us explain what we mean by “entropy is concave”. Let X and Y be any
two random variables. Choose any λ ∈ [0, 1], and define the random variable Z to be the
outcome of the following experiment:

1. Toss a biased coin with probability of Heads being λ.

2. If the coin comes up Heads, draw a sample according to X.

3. If the coin comes up Heads, draw a sample according to Y .

4. Report whatever sample is drawn as the value of Z.

The claim is that the entropy of Z is at least λH
[
X
]

+ (1− λ)H
[
Y
]
.

Let B be a 0-1 random variable reporting the outcome of the biased coin’s toss: Heads
means B = 0, and Tails means B = 1. Then Z “copies” the value of either X or Y ,
depending on B. That is,

Z = (1−B)X +BY =

{
X if B = 0
Y if B = 1

Hence H(Z) ≥ H(Z|B) because conditioning cannot increase entropy

= Eb
[
H(Z|B = b)

]
definition of conditional entropy

= λH
[
Z|B = 0

]
+ (1− λ)H

[
Z|B = 1

]
= λH

[
X
]

+ (1− λ)H
[
Y
]
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