Communication Complexity 28th Sept 2011 (@ TIFR)

13. Lower bound for norm estimation
Lecturer: Prahladh Harsha Scribe: Rakesh Venkat

In this lecture, we will see an application of information theoretic methods to obtain a
lower bound on the communication complexity of the Gap-L, problem and generalizations
of this problem. This problem results naturally from trying to prove lower bounds on
estimating the Lo, norm on data streams. The references for today’s lecture are [BJKS04]
and [AJP10].

13.1 The Gap-L., problem

Problem 13.1 (the Gap-Lo(m,n) problem). Parameters: n,m (with n > m typically).
The instances of the problem are pairs (z,y) € {0,1,...,m}™ x {0,1,...,m}".

YES: ||z — y|loo = m, that is, Ji : |z; — y;| > m.
NO: ||z — ylloo < 1, that is, Vi : |x; —y;| < 1.

As usual, x goes to Alice, y goes to Bob, and they have to differentiate between the YES and
NO instances.

Usually we will drop the (m, n) arguments, and simply refer to it as the Gap-Lo, problem.
Our goal for this lecture is to prove the following theorem:

Theorem 13.2 ([BJKS04]). Rf;gj(Gap—Loo) =Q ().

As we observed in Lecture 5, this theorem implies lower bounds on the space require-
ments for streaming algorithms approximating the L..-norm, running on a stream of length
n, where every stream element lies in {0, ..., m}.

Corollary 13.3. Any streaming algorithm (even randomized) that approximates the oo-
norm to within a factor m requires space Q(n/m?).

13.2 Hardness of approximating Gap-L

We will express the Gap-Lo, problem as a a disjunction of n copies of a smaller problem,
called DIST. Each of these subproblems corresponds to a decision problem on one co-
ordinate of the Gap-L, problem. We then proceed by applying techniques similar to the
previous lectures on disjointness. First, we define a distribution over the NO instances of
the inputs that acts as a fooling set of sorts. If a private-coins protocol for Gap-L had
communication dn for the original problem, then we will zoom-in on one co-ordinate, and
show that it must have conveyed at most § bits of information for DIST on this co-ordinate.
But we know that at least some information must have been transmitted for this co-ordinate,
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since our inputs now come from a ‘fooling set’, and using randomized communication the
protocol is able to distinguish between YES and NO instances with error at most < % — €.

The main departure from the disjointness proof will come in the fact that the single co-
ordinate DIST problem analysis will require a new property of Hellinger distance, different
from the cut-and-paste property one used earlier. This is the Z-Lemma, and we will state
and prove it along the way.

13.2.1 The DIST Problem
We first define the DIST(m) problem as follows:

Problem 13.4 (the DIST(m) problem). Instances are integer pairs (u,v) € {0...m} X
{0...m}.

YES: |u —v| > m.
NO: |u—v| < 1.

As before, we will drop the argument m, if is clear from context. Notice that given a
Gap- L, instance (z,y), we have

Gap-Loo(2,y) = \/ DIST (i, y:)
=1

13.2.2 The fooling set distribution for DIST and Gap-L.,

We now define a distribution over questions for the players in the Gap-Lo, problem. Let o =
(T3, Si)i~, be arandom variable, where each o; = (T3, S;) taking values uniformly in {A, B} x
{0,...,m — 1}. For example, o may look like [(4,0),(B,4),(B,m —1),...,(A,7)]. The
distribution on (X,Y") is defined based on the value of o drawn; we denote the distribution
of X, Y conditioned on a given value of o as (X?,Y7):

qu €ER {SZ,SZ +1}
Yia =5;,+1

X7 = 8;
Y7 e {S;,S;i +1}

X°Y? . If T, =A then {
If T, = B then {

Note that conditioned on a fixed value of o, the questions are chosen independently
across co-ordinates. Also, this distribution has support only on the NO instances, and acts
like a fooling set for the problem.

13.2.3 Part 1: Reducing Gap-L., to DIST

All probabilities in what follows are over the distribution defined above, and private ran-
domness used by the players. Let us start off, as in the previous lecture, with II(X,Y")
being the random variable corresponding to the transcript on the (random) questions X, Y
(for the Gap-Lo, problem). Suppose that this transcript succeeds with probability > % + ¢,
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(this is over only the private randomness of the players, and holds for every input) and has
length < dn. Let (X?Y7) be the questions conditioned on o (in general, superscripting
with o refers to conditioning with respect to o) . We have the familiar inequality chain:

[I(X, V)]
[(X7Y7)]o]
[(X°Y7 : I(X7Y7)|o]

H
H

~

> I[X7Y?  II(X°Y7)|o]. [using the chain rule for mutual information)]

= 0= [I[XEYk o]

Qm >~E=

[ e |07 o]

I[X7Y? okl . [for some fixing of k, o_g]

We show a lower bound on this quantity. As all other co-ordinates are fixed to a NO
instance of DIST, the protocol must compute DIST on co-ordinate k correctly with at least
the same probability as it computes Gap-Lyo, which is % + €.

Since o = (T}, Sk), either Alice or Bob is active (depending on T}, with probability
1/2 each. Further, the inactive party is set to a fixed value, which is uniform either over

the space {0,...,m — 1} or {1,...,m}. Unrolling the above expectation over the values of
o). gives:
LS [y (A.5) (B.3) (B.3)
sS) . S B,S . B,S
6> 5 1x o (x s+ 1) |+ 1 [P (s, 5]
s=0

Note that the variables X IEA’S) and Yk,(B’S) are uniform in {s, s+1}. For simplicity, denote
I, = II(a,b). Applying the mutual-information to Hellinger distance property, we get:

m—1

Z h2 s ,5+1 s+1,s+1) + hQ(Hs,sa Hs,s—H)

S

|\/
[\V]
3\“

2
h s,541, st 1,541) + (I s, Hs,s+1)> [By Cauchy Schwarz inequality]

v
"T
[a—
A
H

s=0

2
1 m—
= Am2 ( h(ILs s, st s+1)> [By triangle inequality]
s=0
1
2 Am? 7* (Moo, Mynm) [By triangle inequality]

However, Ily, I1,,,, are possibly close in statistical distance, since both correspond to
NO instances. Similarly, Ilg,,, 1,0 could also be close since both are YES instances. So a
routine cut and paste yields nothing, and we will need something more to proceed.
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13.2.4 Part 2: The Z-lemma, finishing the proof

Lemma 13.5 (Z-Lemma for Hellinger distance). IfII is the transcript for a communication
protocol, and let z,x € X, y,y € Y. Then we have the following property:

W2 (Way, Iyry) > = (K (Way, My ) + B2 (I, Mary) -

[\D\H

Before seeing the proof of this lemma, let us use it to finish the earlier proof. Applying
the Z-Lemma, we have,

1
§> " (h? (Moo, Mom) + A2 (o, inim )

1

16m?2
1

16m?2

82

2m?2’

> (A2 (Igg, Mo ) + A2 (I, 0, Im))  [Moving from Hellinger to statistical distance]

> . 8e?

which gives us the final result that Rll);g’(Ga p-Loo) = 2(57) (since the total communication

was on).
Now, we prove the Z-lemma.

Proof of Z-Lemma 13.5. Let II(x,y) be the randomized transcript on questions X = z,Y =
y. We know that there are functions g4, gp such that Pr[II(z,y) = 7] = qa(7,z)qs(7,y).
Using this, we can write:

%(1 — B (M, Myry) + %(1 — (M, Mary))
=% > Vaa(r.2)as(r.9)aa(r, 2)as(r,y) + Vaa(r 2)ap(ry)aa(r,a)as(r.y')
=3 BN oy aatr )
> Z Vas(1,9)as(T, )V aa(r, x)ga (T, 2') [AM-GM inequality]

=1 — h*(ILy, My ).

13.3 Generalization using Poincaré inequalities

Let g be a distance function, i.e. g: X x X — {0,1} satisfies Vx € X : g(x,z) = 0 and
Ve,y € X x X @ g(z,y) = g(y,z). The DIST function is an example of such a distance

function.
The problem we consider, is to lower bound the communication complexity of f : X™ x

X" — {0,1}, the disjunction of n copies of g:
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fa,y) 2\ g@i,vi)
=1

Andoni, Jayram and Patrascu [AJP10] show that the proof method used for Gap-L«, can
be generalized to find a lower bound on Rﬁ’;g’( f), as long as g satisfies a Poincaré inequality.

A Poincaré inequality for g is stated with respect to two distributions 79 and 7y satis-
fying: supp(n9) € ¢~ 1(0) and supp(n1) € g~ 1(1). g is said to satisfy a Poincaré inequality

with respect to these distributions, if for some oo € R* and Vp : X — S

2 2
E lp(z) =p)llz =2 a E [lp(z) = p(y)ll2-
Y~Mo Ty~
Poincaré inequalities of this form arise in many places. Notable examples are expanders
and Boolean function analysis.

Example 13.6. Consider the Boolean hypercube H on {0,1}", and define the function
g+ {0,1}" x {0,1}" — {0,1} as follows: g(z,y) = 0, if [z =yl < 1 and g(z,y) =
Lif lz =yl = n.

Set ng to be uniform over the pairs (x,y) with ||x — y|l1 = 1, and n1 to be uniform
over pairs (x,Z). Then we can show that g satisfies a Poincaré inequality for any mapping
p:H— S,

E [lpw—p@I3 == E (o) - p(0)ll]
(u,v)~mo 1 (u,v)~m
Example 13.7. The DIST function on{0,...,m}x{0,...,m} — {0,1} satisfies a Poincaré
inequality, with no be the uniform distribution over pairs (s,s+1) with s €g {0,...,m—1},
and 1 supported completely on the single pair (0,m) :

1
w) — pu+1)|2] > —=1|p(0) = p(m)||3.
e o) = plu+ DIE) > —5115(0) = p(m)
This has been implicitly shown in the proof of the previous section, using Cauchy-Schwarz
and triangle inequalities.

Let us sketch the general proof method, that runs along the same lines as above. First,
we define the distribution over the questions depending on o €r ({4, B} x n9)". Note
that the second component in every co-ordinate is a NO instance drawn from 7g. Let
o; = (T;,(U,V)). Then set the questions as follows:

X
T, = A then{ 7 Er v}
Yo =v
X —
If T; = B then ¢ T
Y €r {u,v}.

Let II be the transcript of a private coins protocol for f that succeeds with probability
%—I—E and has length < dn. Again, following chain of inequalities as in the Gap-L., problem,
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we arrive at the point where, for some fixed o_; and k, we have that:
0> E [I[X7Y7 -1
Ok

1
SOE [IX™ (XM, 0)] + IV T(u, Y))]
2 (u,0)~0

1
5 E [hQ (Huva va) + h2 (Huua Huv)]
2 (uvv)'\’no

>

E [hQ (I, Moo [Cauchy Schwarz + A inequality]

(w,v)~m0

E  [h?(Iluy, Iyy)] [Poincaré inequality]

(U,U)an

E [h2 (Huva Huu) + h2 (Hvu, Hm;)] [the Z—lemma]

(w,v)~m

E  [A*(Tluy, M) + A (T, My, )] [moving to statistical distance]

(u,v)~m

Y
@[ &2 &I

| o

>

—_
D

From reflexivity, we know that g(u,u) = g(v,v) = 0, but g(u,v) = g(v,u) = 1 since
(u,v) ~ m1. Thus, A(Ilyy, IT,,) > 2e and A(IL,,, I,,) > 2. Plugging this in gives us our
bound:

This gives us that R?;g’(f) = Q(an).
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