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Communication Complexity 17 Oct, 2011 (@ IMSc)

Lec. 15: Direct Sum (Part II) - protocol compression

Lecturer: Prahladh Harsha Scribe: Raja S

Summary
In this lecture, we continued our discussion on directsum. We gave a protocol compres-

sion strategy over general distribution, in which given a protocol Π with information content
ICµ(Π), produces another protocol τ such that expected length of τ is upper bounded by

c
√
|Π| ∗ ICµ(Π) ∗ (

log(
|Π|
ε

)

ε )

Public + Private coins protocol tree: We recall that we viewed communication be-
tween Alice and Bob as a protocol tree T where each internal node of T is owned exactly
by one party (Alice or Bob) and also for each internal node v of T they have probability
distribution Pv,z by which they select either left or right subtree, where z is either x or y
depends on whether v is owned by Alice or Bob respectively. We viewed public coin protocol
as a distribution over such protocol trees (i.e., both Alice and Bob use public randomness
to select one of such trees and proceed).

Node Representation: We define representation of a node v of T as concatenation of
binary bits on the unique path between root and v in the protocol tree (i.e., transcript (in
binary) that would have led to node v).

Notations: Let jv is the length of the node representation of v. Here probability is over
R,RA, RB.
(1) Pv,xy(w) = P [Π(x, y)jv+1 = w|Π(x, y)≤jv = v]
(2) Pv,xY (w) = PY [Π(x, Y )jv+1 = w|Π(x, Y )≤jv = v]
(3) Pv,Xy(w) = PY [Π(X, y)jv+1 = w|Π(X, y)≤jv = v]
(4) Pv,XY (w) = PX,Y [Π(X,Y )jv+1 = w|Π(X,Y )≤jv = v]

Observation: If node v in T is owned by Alice then ∀y Pv,xy = Pv,x. Similarly, if node v
in T is owned by Bob then ∀x Pv,xy = Pv,y

The overall algorithm is first both Alice and Bob select a protocol tree using public
randomness and then each sample a path PA and PB (from root to a leaf) respectively from
this tree (independently). Note that, in selecting PA, for nodes owned by Bob, Alice has to
select one of its subtrees, but she does not have information about Pv,y, so she will choose
based on Pv,xY . Similarly, Bob also selects PB. Let P be a path selected if original protocol
Π is followed. There may be disagreement(s) between PA and PB. So, they will try to find
and fix these disagreement(s), for this they will use the public coin protocol for EQn. Note
that, PA and P may differ in locations in which corresponding node in the protocol tree is
owned by Bob. Similarly for PB and P . Note that, once all disagreement(s) are fixed then
PA = PB = P .
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15.1 Preliminaries

15.1.1 FIND-FIRST-DISAGREEMENT

Given two n bits binary string x and y, the task is, if x 6= y, then to find the first location
i, from msb, such that xi 6= yi. We know how to check if x = y or not, using O(1)-bits of
communication. They both check if x 6= y then they check whether first half of x and y is
equal or not. If it is not equal, they recursively sovle this sub-problem and if it is equal then
they solve the other subproblem. Using O(log n)-bits of communication, they can both find
location i such that xi 6= yi.

Error analysis: We know that Rpub1
3

= O(1). We repeat each equality for O(log log n)

times and output equality only if each time we get a equality. This new protocol gives
Rpub1

3 logn

= O(log log n) for each subproblem. Since there are O(log n) subproblems (i.e.,

equality check) where each subproblem needs O(log log n) bits of communication, total
communication is O(log n log logn) bits with error at most 1

3 (using union bound).

If original error is ε then we repeat each equality for log( logn
ε ), which gives Rpubε

logn
=

O(log( logn
ε )) and thus total communication is O(log n log( logn

ε )). But the following result
is known,

Theorem 15.1. ∀ε > 0, there exists a O(log(nε )) bits public coin protocol that finds the
first disagreement, if one exists, with error probability at most ε.

15.1.2 Correlated sampling

Both Alice and Bob use public randomness to obtain kw ∈u.a.rr [0, 1], for each internal node
w of the protocol tree.

If Pr[Πr(X,Y ) reaches left child | Πr(X,Y ) reaches w,X = x] > kw then set cx(w) = left
child of w. Otherwise, set cx(w) = right child of w

15.1.3 Handling public coins

Both Alice and Bob choose a protocol tree using public randomness. We use ICµ(Π), where
Π is public + private coins protocol, to denote information content of Π over distribution
µ. We use ICµ(Πr), where Πr is the private coins protocol with public coin is fixed to r, to
denote information content in Πr. We now show that ICµ(Π) = Er[ICµ(Πr)].
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Lemma 15.2. ICµ(Π) = Er[ICµ(Πr)]

Proof.

ICµ(Π) = I[X : Πr(X,Y )R|Y ] + I[Y : Πr(X,Y )R|X]

= I[X : R|Y ] + I[Y : R|X] + I[X : Πr(X,Y )|R, Y ] + I[Y : Πr(X,Y )|R,X]

( using the chain rule for information I[X : Z1Z2] = I[X : Z1] + I[X : Z2|Z1])

= I[X : Πr(X,Y )|R, Y ] + I[Y : Πr(X,Y )|R,X]

= Er[ICµ(Πr)]

15.2 Compressed Protocol τβ,γ

(1)(public randomness)Alice and Bob use public randomness r to fix private coin protocol
Πr

(2)(correlated sampling)For each internal node v in the protocol tree of Πr, both Alice and
Bob use public randomness to pick κ ∈u.a.r [0, 1] and set
For Alice

Cx(v) =

{
0 if κv ≤ Pv,xY
1 otherwise

For Bob

Cy(v) =

{
0 if κv ≤ Pv,Xy
1 otherwise

(3)(path) Alice’s path is Vx = v0
x, v

1
x, ..., v

|Πr|
x where v0

x = root of the protocol tree and
vl+1
x = Cx(vix). Similarly Bob’s path is also defined.

Note that now both Alice and Bob have an individual path and also they have not yet
communicated each other.

We also define the correct path as follows, V = v0, v1, ..., v|Πr| where v0 = root of the
protocol tree and

vi+1 =

{
Cx(vi) if vi is owned by Alice
Cy(vi) if vi is owned by Bob

(4)(path fixing phase)

For i = 1 to T
γ

Run FIND-FIRST-DISAGREEMENT with error β and fix the disagreements

Error analysis: P [Alice output 6= Bob output 6= V ]
The source of errors are,
(1) Number of disagreements are > T

γ , which can be upper bounded by γ using Markov
inequality
(2)One of FIND-FIRST-DISAGREEMENT errors, which is upper bounded by β.Tγ (using
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union bound)

Thus, total error is upper bounded by γ + β.Tγ = γ2+βT
γ .

By setting, γ2 = βT and β = ε2

4T , we have γ2+βT
γ = 2

√
βT = ε. (γ = ε

2)

Total comunication is T
γ .O(log n

β ) =
T∗O(log n

β
)

ε

We now calculate expected number of disagreements T in a protocol tree selected by public
coins.

Let Ei be an indicator random variable which is set to 1 if there is a disagreement at
level i in the protocol tree and 0 otherwise. Note that disagreement happens at level i
exactly when Cx(vi) 6= Cy(vi).

E[Ei] = EX,Y,V [|V i|xv<i − V i|yv<i |]
= EX,Y,V [∆(V i|XV<i , V i|XY V<i) + ∆(V i|Y V<i , V i|XY V<i)]

≤ EX,Y,V [
√
D(V i|XY V<i ||V i|XV<i) +D(V i|XY V<i ||V i|Y V<i)](using the relation between ∆ and D)

≤
√
EX,Y,V [D(V i|XY V<i ||V i|XV<i) +D(V i|XY V<i ||V i|Y V<i)] (using Jensen inequality)

≤
√
I[V iY |XV<i] + I[V iX|Y V<i] (using the relation between I and D)

Total number of disagreements are,

Z =
∑
i

Zi

E[Z] =
∑
i

E[Zi]

≤
∑
i

√
I[V iY |XV<i] + I[V iX|Y V<i]

≤
√
|Π| ∗

∑
i

I[V iY |XV<i] + I[V iX|Y V<i] (using Cauchy-Schwarz inequality)

=
√
|Π| ∗ (I[V : Y |X] + I[V : X|Y ]) (using chain rule for information)

Now, we calculate the expected number of disagreements T over public coins.
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Er[# disagreements] ≤ E[

√
|Π| ∗

∑
i

I[V : Y |X] + I[V : X|Y ]]

≤
√
E[|Π| ∗ (I[V : Y |X] + I[V : X|Y ])] (using

√
x is concave and Jensen inequality)

=
√
E[|Π| ∗ ICµ(Π)]

We have the following theorem,

Theorem 15.3. There exists a contant c > 0, ∀µ ∀ε ∀Π, there exists another protocol τ
and functions ΠA,ΠB such that the following are true

(1) |τ | ≤ c
√
|Π| ∗ ICµ(Π) ∗ (

log(
|Π|
ε

)

ε )
(2)Pr[ΠA(X, τ(X,Y )) 6= Π(X,Y )] ≤ ε
(3)Pr[ΠA(τ(X,Y ) 6= ΠB(Y, τ(X,Y ))] ≤ ε

15.3 Appendix

15.3.1 Divergence / Relative Entropy / Kullback-Leibler Distance

The relative entropy or Kullback-Leibler distance between two probability mass funciton
p(x) and q(x) is defined as, D(p||q) =

∑
x p(x) log p(x)

q(x) = Ep[log p(X)
q(X) ]

Entropy: Entropy H of a distribution P is defined as H(P ) =
∑

i pi log 1
pi

Intuitively, H(P ) is expected number of bits required to encode a random variable dis-
tributed according to P .

Intuitively, D(P ||Q) is expected number of extra bits used when elements in distribution P
are encoded using encoding for distribution Q.

15.3.1.1 Properties of D(P ||Q)

(1)D(P ||Q) ≥ 0

D(P ||Q) =
∑
i

pi log
pi
qi

= −
∑
i

pi log
qi
pi

≥ − log
∑
i

pi
qi
pi

(using log x is concave and Jensen inequality)

= 0

(2) D(P ||Q) <∞ iff supp(P ) ⊆ supp(Q)
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(3) ∆2(P,Q) ≤ D(P ||Q) (∆(., .) is total variation)

(4) I[X : Y ] = Ex←X [D(Yx||Y )]

I[X : Y ] =
∑
x,y

pxy log
pxy
px.py

=
∑
x

px
∑
y

py|x log
pxpy|x

px.py

=
∑
x

pxD(Yx||Y )

= Ex←X [D(Yx||Y )]

15.3.2 Correlated sampling

Let Alice has a distribution P with P [head] = p and P [tail] = 1 − p. Let Bob has a
distribution Q with P [head] = q and P [tail] = 1 − q. In correlated sampling, they do the
following.
(1) they use public coins to pick κ ∈u.a.r [0, 1]
(2) Alice output head if κ ≤ p and tail otherwise. Similarly, Bob output head if κ ≤ q and
tail otherwise.

Facts:
(1) Alice output is distributed according to P
(2) Bob output is distributed according to Q
(3) Pr[Alice output 6= Bob output] = |P −Q|1
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