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18. Monotone depth lower bound for st connectivity

Lecturer: Karteek Sreenivasaiah Scribe: Nitin Saurabh

In Lecture 2, we saw how communication complexity lower bounds yield lower bounds for
circuit depth. In particular, we showed that for any function f , D(KWf ) = depth(f) and
D(KW+

f ) = depth+(f), where KWf denotes the Karchmer-Wigderson game on f . Using
this, we showed that monotone circuits for matching require Ω(n) depth.

In this lecture we will show that circuits solving directed s-t connectivity require Ω(log2 n)
depth. The directed s-t connectivity function DSTCONn is defined as follows: Given a di-
rected graph G on n nodes, a source vertex s and a target vertex t,

DSTCONn(G, s, t) = 1⇐⇒ there is a directed path in the graph G from s to t

Clearly, this function is monotone; adding edges cannot remove an already existing path.
We assume without loss of generality that the vertices are numbered from 1 to n and

s = 1 and t = n. In the KW+ game on this function, Alice is given a graph G1 that has an
s− t path, while Bob has a graph G0 that does not have an s− t path. The goal is to find
an edge (u, v) that appears in G1 but not in G0.

For the purposes of showing a lower bound, we will restrict our attention to special
inputs. We will define a FORK relation and show that the communication game for the
FORK relation reduces to KW+

DSTCON on special inputs. We will then give a lower bound for
the FORK relation by repeatedly using round elimination and amplification. The references
for today’s lecture include Sections 5.3 and 10.3 of [KN97].

18.1 The FORK relation

Let Σ be an alphabet consisting of w letters, say {1, . . . , w}. Define a relation FORKw,l ⊆
Σl × Σl × [l] where (x, y, i) ∈ FORKw,l ⇔ (xi = yi and xi+1 6= yi+1). If x = y, then there
does not exist any i such that (x, y, i) ∈ FORKw,l. Therefore we will implicitly pad x and y
with additional 0 and l + 1 positions such that x0 = y0 = 1, xl+1 = w, and yl+1 = w − 1.
This ensures that ∀x, y ∈ Σl, ∃i ∈ {0, . . . , l} such that (x, y, i) ∈ FORKw,l.

18.2 Reducing the FORK relation to DSTCON

In the communication game on the FORK relation, Alice has the string x ∈ Σl, Bob has
the string y ∈ Σl, and they want to determine an i such that (x, y, i) ∈ FORKw,l. We will
show that a communication protocol for the DSTCON function can be used to solve this
game. We will only need instances of DSTCON that are layered graphs consisting of l + 2
layers, with each layer having w vertices. s belongs to layer 0 and t belongs to layer l + 1.
Each edge connects a vertex in some layer i to a vertex in the next layer i+ 1. We refer to
DSTCONn, restricted to such instances, as DSTCONw,(l+2), where n = w(l + 2).
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Lemma 18.1.
FORKw,l ≤ KW+

DSTCONw,(l+2)

Proof. Let Π be a protocol for KW+
DSTCONw(l+2)

. We will show that this protocol can be

used to solve FORKw,l. Alice and Bob can solve FORKw,l as follows:
Alice is given x ∈ Σl. Alice constructs the layered graph G1 with l+2 layers. Each layer

has w vertices, corresponding to the w letters of the alphabet. Alice constructs the path Px
corresponding to x0, . . . , xl+1 by choosing from each layer i the vertex xi and connecting it
to the vertex xi+1 in layer i+1. Let vi,j denote vertex j in layer i. So Alice’s graph consists
of just one path connecting v0,1 to vl+1,w.

Bob is given a string y ∈ Σl. Bob constructs the graph G0 with the same number of
layers and vertices as above. Bob’s graph contains the path Py corresponding to y0, . . . , yl+1.
In addition, Bob also adds an edge between a vertex of layer i that is not in the path Py
to all the vertices of layer i + 1. Observe that from v0,1, we can only go along the path
Py. But Py does not reach vl+1,w (since xl+1 = w and yl+1 = w − 1), and hence v0,1 is not
connected to vl+1,w in G0.

Choosing s to be v0,1 and t to be vl+1,w, we see that G1 is a yes instance and G0 is a
no instance. Now Alice and Bob use the protocol Π on G1 and G0 and get as output an
edge (u, v) that appears in G1 but not in G0. Let u belongs to some layer i and v belongs
to layer i + 1. Note that (u, v) belongs to path Px since only edges of Px are present in
G1. Further, u belongs to path Py but v does not, because these are the only kind of edges
missing in G0. Therefore xi = yi but xi+1 6= yi+1. So (x, y, i) ∈ FORK as desired, and both
Alice an Bob know i after running the protocol.

18.3 Lower bound for the FORK relation

We now show a lower bound for the communication game of the FORK relation. In partic-
ular, we show that D(FORKw,l) = Ω(log l logw).

For each fixed w, we define the notion of an (α, l) protocol. For 0 ≤ α ≤ 1, we say that
a protocol is an (α, l) protocol if there exists a set S ⊆ Σl of size |S| ≥ α · |Σ|l such that for
all x, y ∈ S, the protocol gives a correct answer for FORKw,l(x, y).

Lemma 18.2 (Round elimination). If there exists a c-bit (α, l) protocol for the relation
FORKw,l, then there is also a (c− 1)-bit (α/2, l) protocol for FORKw,l.

This lemma says that we can eliminate one bit from the message transcript and still be
correct on a large fraction of the inputs.

Lemma 18.3 (Amplification). Let α ≥ λ/w (for a large enough constant λ). If there
exists a c-bit (α, l) protocol for FORKw,l, then there is also a c-bit (

√
α/2, l/2) protocol for

FORKw,l/2.

This lemma says that a protocol with a “success probability” (fraction of inputs on
which correct) in a suitable range (

√
α/2 ≥ α ≥ λ/w) can be converted into a protocol with

a larger success probability, though on smaller inputs. (Since we fix w in this argument, l
is a good measure of input length.)

Assuming the above lemmas, we can prove the following theorem.
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Theorem 18.4.
D(FORKw,l) = Ω(log l logw)

Proof. Let C(α, l) denote the minimum number of bits required by an (α, l) protocol for
FORKw,l. Then D(FORKw,l) = C(1, l). Since C(1, l) ≥ C(1/w1/3, l), it suffices to prove
that C(1/w1/3, l) = Ω(log l logw). From Lemma 18.2 we know that C(α, l) ≥ C(α/2, l) + 1.
Applying this log(14w

1/3) times, we get C(1/w1/3, l) ≥ Ω(logw) + C(4/w2/3, l). Apply

Lemma 18.3 once to get C(4/w2/3, l) ≥ C(1/w1/3, l/2). Hence we have C(1/w1/3, l) ≥
Ω(logw)+C(1/w1/3, l/2). Repeating the above argument Θ(log l) times, we get C(1/w1/3, l) ≥
Ω(log l logw) + C(1/w1/3, 1). But C(α, 1) ≤ C(1, 1) ≤ logw. The result follows.

We will now establish the two lemmas.

Proof of Lemma 18.2. Assume without loss of generality that Alice sends the first bit in
the (α, l) protocol Π (the case when Bob sends the first bit is similar). Let S ⊆ Σl be the
good set guaranteed by the (α, l) property. Let S0, S1 ⊆ S be the sets of strings for which
Alice sends 0 and 1 as the first bit respectively. Let Sb be the larger among S0 and S1, then,
clearly |Sb| ≥ |S|/2. Define a new protocol Π′ which is exactly like Π except that the first
bit is not sent at all; Alice and Bob assume the first bit to be b and then follow Π. Then,
Π′ is a (c− 1)-bit protocol with good set Sb. Hence, Π′ is a (c− 1)-bit (α/2, l) protocol for
FORKw,l.

We will need the following claim to prove Lemma 18.3.

Claim 18.5. Consider an n×n 0-1 matrix. Let m be the number of 1s in it, and mi be the
number of 1s in the i-th row. Denote by α = m/n2 the fraction of 1-entries in the matrix
and by αi = mi/n the fraction of the 1-entries in the i-th row. Then, at least one of the
following holds:

(a) There is some row i with αi ≥
√
α/2.

(b) The number of rows for which αi ≥ α/2 is at least
√
α/2 · n.

Proof. Say
√
α/2 is high-density, and α/2 is moderate density, of 1s. Then the claim says

that either there is a high-density row, or there are many moderate-density rows. To see
why, observe that

∑n
i=1 αi =

∑n
i=1mi/n = m/n = α · n. Now suppose neither (a) nor (b)

holds. This means that for all rows αi <
√
α/2, and for less than

√
α/2 · n rows αi ≥ α/2.

Therefore,

α · n =

n∑
i=0

αi < (
√
α/2 · n) ·

√
α/2 + n · α/2 = αn,

a contradiction.

Proof of Lemma 18.3. Let S be the good set corresponding to the (α, l) protocol Π. Con-
sider a matrix M whose rows and columns correspond to strings in Σl/2. An entry corre-
sponding to row u and column v of M is 1 if the string u ◦ v is in S and 0 otherwise. Since
|S| ≥ α|Σl|, the density of 1s in the matrix is at least α. Applying Claim 18.5 to the matrix
M, we get that it satisfies either (a) or (b) (or both).
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Suppose the matrix satisfies (a). Then there exist a row, corresponding to some string
u ∈ Σl/2, with density at least

√
α/2. The new protocol Π′ for FORKw,l/2 works as follows:

on input x, y ∈ Σl/2, Alice and Bob use the original c-bit (α, l) protocol Π on the strings
x′ = u ◦ x and y′ = u ◦ y. Since we are prefixing both x and y with the same string u,
whenever (x′, y′, i) ∈ FORK, we know that i ≥ l/2, and hence (x, y, i − l/2) ∈ FORK. The
protocol Π succeeds whenever u ◦ x and u ◦ y are in S. Let S′ = {x|u ◦ x ∈ S}. Then Π′

succeeds whenever x, y ∈ S′, so S′ is good for the protocol Π′. Since (a) holds with respect
to S, we know that |S′| ≥

√
α/2|Σ|l/2. So Π′ is a c-bit (

√
α/2, l/2) protocol for FORKw,l/2.

Suppose the matrix satisfies (b). Let S′ be the set of all rows with density at least α/2;
then |S′| ≥

√
α/2 · |Σ|l/2. We will show that there exist functions f, g : Σl/2 → Σl/2 and a

set S′′ ⊆ S′ such that the following holds:

1. ∀x ∈ S′′, x ◦ f(x) ∈ S,

2. ∀y ∈ S′′, y ◦ g(y) ∈ S,

3. ∀x, y ∈ S′′, the strings f(x) and g(y) are different in all coordinates, and

4. S′′ contains
√
α/2 fraction of the strings in Σl/2.

Assuming that we can show the existence of f, g and S′′, the new protocol Π′ is as follows:
On input x, y ∈ Σl/2 Alice and Bob use the original c-bit (α, l) protocol on x′ = x ◦ f(x)
and y′ = y ◦ g(y). By properties (1) and (2), for all x and y in S′′, x′, y′ ∈ S, and so Π
identifies an i such that (x′, y′, i) ∈ FORK. By property (3), i ≤ l/2, and (x, y, i) ∈ FORK.
By property (4), this is a c-bit (

√
α/2, l/2) protocol for FORKw,l/2.

Now we prove the existence of f, g and S′′ with the desired properties. Let A1, . . . , Al/2
be subsets of Σ where each Ai is of size w/2. If we ensure that f(x) ∈ A = A1 × · · · ×Al/2
and g(y) ∈ B = A1 × · · · × Al/2, then property (3) immediately holds. So it remains to
show that there exist such sets for which the other properties also hold. We will choose the
Ais at random and show that this happens with non-zero probability. We choose Ais as
follows: first choose at random w/2 strings v1, · · · , vw/2 each of length l/2. Then we define
Ai to include the i-th letter in each of these w/2 strings and extend it into a set of size w/2
randomly. (Note that the resulting sets A1, . . . , Al/2 are indeed random and independent.)
Now, fix x ∈ S′. An extension x′ is a good choice for f(x) if x · x′ ∈ S. Since x ∈ S′, we
know that a random x′ is good with probability at least α/2. Hence the probability that
none of the vectors in A is a good choice for f(x) is less than (1 − α/2)w/2 < e−αw/4. A
similar analysis holds for good choices for g(y) in B. Therefore, the probability that either
A or the corresponding B is not good is at most 2e−αw/4. So, for every x ∈ S′, at least
(1 − 2e−αw/4) fraction of the partitions (A,B) is good. Hence, there is a partition that is
good for at least 1 − 2e−αw/4 of the elements of S′. Let S′′ be this set of elements. The
fraction of elements of |Σ|l/2 in S′′ is thus at least (1 − 2e−αw/4) ·

√
α/2, which is at least√

α/2, for α ≥ λ/w (for some constant λ).

18.4 Putting it together

Using Lemma 18.1, Theorem 18.4, and choosing l + 2 = w =
√
n we have

D(KW+
DSTCONn

) ≥ D(FORK√n,
√
n−2) = Ω(log2 n)
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Now using Theroem 2.14 from Lecture 2, we get the following theorem.

Theorem 18.6.
depth+(DSTCONn) = Ω(log2 n)
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