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22. The Gap-Hamming Problem

Lecturer: Meena Mahajan Scribe: Abhishek Dang

In this and the next class, we examine the Gap Hamming problem and show that it requires
Ω(n) communication.

22.1 Problem Statement

Given x, y ∈ {−1, 1}n with the promise that |〈x, y〉| ≥
√
n, decide whether 〈x, y〉 ≤

−
√
n or ≥

√
n. (If the input does not satisfy the promise, any outcome is acceptable.)

That is

GHDn(x, y) =


−1 if 〈x, y〉 ≤ −

√
n

1 if 〈x, y〉 ≥
√
n

anything otherwise

The following reformulation of the problem justifies the nomenclature. Denoting Hamming
distance (the number of coordinates where x, y disagree) by ∆(x, y), we can see that

〈x, y〉 = n− 2∆〈x, y〉

Thus,

|〈x, y〉| ≥
√
n⇐⇒ |∆(x, y)− n

2
| ≥
√
n

2
So the problem can be reformulated as follows: Given strings x, y satisfying the promise
that the Hamming distance between them is not very close to (not within

√
n/2 of) n/2,

decide whether it exceeds or is less than n/2.

GHDn(x, y) =

{
−1 if ∆(x, y) ≥ n

2 +
√
n
2

1 if ∆(x, y) ≤ n
2 −

√
n
2

with the indicated promise.

Generalized problem statement

More generally, we may consider any threshold t and any gap g. Under the promise that
〈x, y〉 is not within ±g of t, decide whether or not it exceeds t. Denote this generalised
problem on length n strings by GHDn,t,g.

GHDn,t,g(x, y) =

{
−1 if 〈x, y〉 ≤ t− g
+1 if 〈x, y〉 ≥ t+ g

With this notation, the problem we introduced above is GHDn,0,
√
n.

While the general problem is of interest, we show that it reduces to GHD with only a
polynomial blowup in n.
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Claim 22.1. GHDn,t,g reduces to GHDn+|t|,0,g.

Proof. We simply pad the given strings with k = |t| additional bits, as follows.

x −→ X = x −1 . . .− 1

y −→ Y = y ±1 . . .± 1

where we choose to use one of the signs uniformly in the latter padding. Hence 〈X,Y 〉 =
〈x, y〉 − k or 〈x, y〉 + k depending on this choice. We pad y with −1s when t < 0 and
with +1s when t > 0. In either case we have 〈X,Y 〉 = 〈x, y〉 − t, giving a reduction to
GHDn+|t|,0,g.

Claim 22.2. GHDn,0,g reduces to GHDN,0,
√
N for a suitable N ≤ n2/g2.

Proof. This reduction is also achieved by padding, but this time by a number of copies of
the input.

If g ≥
√
n, we simply use the same inputs for the GHDn,0,

√
n problem. (So N = n.)

Otherwise consider the map

x −→ X =

k︷ ︸︸ ︷
x . . . x; y −→ Y =

k︷ ︸︸ ︷
y . . . y .

This amplifies the gap, because 〈X,Y 〉 = k〈x, y〉. We would be done if kg ≥
√
N =

√
kn,

so we choose k = n/g2 (and N = n2/g2).

Henceforth, we restrict attention to the special case GHDn,0,
√
n and denote it by GHDn

or just GHD.

22.2 Motivation

The gap-Hamming distance problem (GHD) was proposed by Indyk and Woodruff [IW05]
as a means to understand the complexity of several streaming tasks. We would be in-
terested in the applications of GHD to computing frequency moments of data streams.
More specifically, we briefly study how lower bounds on the communication complexity of
gap-Hamming distance imply lower bounds on the memory requirements of estimating the
number of distinct elements in a data stream (denoted F0). (Recall the discussion in Lecture
5.)

For any stream of n numbers from [m], we know that F0 can be found by a 1-pass algo-
rithm using O(m) space, and can be aproximated by a 1-pass algorithm using O(logm, log n)
space ([AMS99]). Further, ignoring polylogm factors, it was shown in [BJKS04] that a 1-
pass algorithm can ε-approximate F0 in space O(1/ε2). A natural question to ask is whether
the dependence on ε can be improved. Indyk and Woodruff showed in [IW05] that it cannot;
a quadratic dependence on 1/ε is necessary. We will see the proof of this result.
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22.3 Streaming lower bounds from GHD lower bounds

Theorem 22.3 (Indyk,Woodruff [IW05]). Suppose there exists a randomized 1-pass algo-
rithm A that uses space S, and with probability at least 2/3, estimates F0 within error at
most ε. Then there exists a 1-way communication protocol for GHDM with M = b1/(16ε2)c,
with error less than or equal to 1/3, and complexity S +O(log 1/ε).

Proof. For the purpose of this proof, we use the Hamming distance formulation of the
GHDM problem.

The algorithm A, on an input stream, uses some randomness r and outputs a number
F̃0. The algorithm satisfies the following:

Pr
r

[|F̃0 − F0| > εF0] ≤
1

3

Consider an instance of GHDM where Alice and Bob are given strings x, y ∈ {0, 1}M
respectively. Alice constructs from x a stream (or set) ax of numbers in [M ], where i ∈ ax
iff xi = 1. Similarly Bob constructs from y a stream ay. Alice runs A on ax and sends the
resulting state of A to Bob. Furthermore, she sends across the number of 1’s in x. Bob
resumes A on ay, thus computing an estimate F̃0 for F0. Bob accepts if

2F̃0 − |x|1 − |y|1 >
M

2
.

Cost : Alice needs to send S bits for the state of A, and dlogMe bits for the number of
1’s in x. So this protocol has cost O(S + log(1/ε)).

Analysis: Denote the cardinalities of the sets ax \ ay, ax ∩ ay, and ay \ ax by a, b, c
respectively. We write,

F0 = a+ b+ c

H = ∆(x, y) = a+ c

H ≤ F0 ≤M
ax = |x|1 = a+ b, ay = |y|1 = b+ c

H = 2F0 − |x|1 − |y|1 = 2F0 −W (say)

E := 2F̃0 − |x|1 − |y|1 = 2F̃0 −W

(1− ε)F0 ≤ F̃0 ≤ (1 + ε)F0 (by assumption about A)

H − 2εF0 ≤ E ≤ H + 2εF0

Case 1: H > M
2 +

√
M
2 . Then, since F0 ≤M ,

E ≥ H − 2εF0 >

(
M

2
+

√
M

2

)
− 2εM

We want E > M/2 in this case. So we need
√
M
2 ≥ 2εM .
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Case 2: H < M
2 −

√
M
2 . Then

E ≤ H + 2εF0 <

(
M

2
−
√
M

2

)
+ 2εM

We want E < M/2 in this case. So again we need
√
M
2 ≥ 2εM .

So, the theorem holds for
√
M
2 ≥ 2εM , that is, M ≤ 1

16ε2
.

Corollary 22.4. If the randomized one-way communication complexity of GHDM satisfies

R1−way(GHDM) = Ω(M)

then any ε-approximate 1-pass streaming algorithm for F0 needs Ω(1/ε2) space.

22.4 1-way lower bound for GHD

We now show the 1-way lower bound for GHD. This, along with Corollary 22.4, tells us that
1-pass streaming algorithms need Ω(1/ε2) space to approximate F0. We follow the proof
from [JKS08].

Theorem 22.5 ([Woo04, JKS08]).

R1-way(GHDN ) = Ω(N)

Proof. We give a reduction from the INDEX problem. As has been seen earlier in the course
(Lectures 9,10),

R
1-way
1/2−δ (INDEX) ≥ 2(log e)δ2n = Ω(n)

Say we have a protocol Π for GHD; we show how this can also be used to solve INDEX.
Consider an instance of INDEX, with Alice having as input x ∈ {0, 1}n and Bob an

index i ∈ [n]. We consider only the case when n is odd; the other case naturally reduces to
this one, and we invoke this assumption in the analysis.

Alice and Bob use public coins to choose an N × n matrix R with ±1 entries (we
will specify N a bit later). Let (Rj)

N
j=1 denote the rows of R. Alice (naturally) changes

her x ∈ {0, 1}n to X ∈ {1,−1}n and then further computes Y = (Y1, . . . , YN ) where
Yj = sgn(〈X,Rj〉). (Recall that n is odd, so 〈X,Rj〉 6= 0. We use the convention that
sgn(a) = 1 if a > 0, −1 otherwise. ) Bob picks out the ith column of R; denote this column
by Z. Alice and Bob then run the GHD protocol Π on Y,Z, and report the same outcome
(mapping back ±1 to {0, 1}) for the given instance of INDEX.

Let us analyze the probability that this protocol answers the INDEX instance correctly.
Let r denote a row of R. Then r is a uniformly random element of {±1}n. Notice that

r contributes to ∆(Y,Z) exactly when sgn〈X, r〉 6= ri. That is,

∆(Y, Z) = |{j | sgn(〈X,Rj〉 6= Rji)}|

We will show below the following two claims.
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Claim 22.6. There exists a constant c > 0 such that for every X ∈ {±1}n and every
i ∈ [n],

Pr
r∈{±1}n

[sgn(〈X, r〉) 6= ri]

{
≥ 1

2 + c√
n

if Xi = −1

≤ 1
2 −

c√
n

if Xi = +1

Claim 22.7. For a suitable chosen N ∈ Θ(n), for every X ∈ {±1}n and every i ∈ [n], for
Y,Z set as above,

Pr
R∈{±1}N×n

[
∆(Y,Z) ≥ N

2
+
√
N

]
≥ 2

3 if Xi = −1

Pr
R∈{±1}N×n

[
∆(Y,Z) ≤ N

2
−
√
N

]
≥ 2

3 if Xi = +1

Assuming these claims, now we can conclude that for every input x, i to INDEX, with
probability at least 2/3 over the choice of R, GHDM (Y, Z) correctly answers INDEX(x, i).

The protocol we have designed for INDEX is also one-way. Its cost is the same as the
cost of Π. Hence

Ω(n) ≤ R1-way(INDEXn) ≤ R1-way(GHDN )

We now prove the two claims.

Proof. (Of Claim 22.6) Let us write

〈X, r〉 = Xiri + w where w =
∑
j 6=i

Xjrj

Remember that we had assumed n to be odd, so w 6= 0 =⇒ |w| ≥ 2. Thus if w 6= 0, then
the first term Xiri is irrelevant in deciding sgn〈X, r〉. We use this fact. Denoting Prr[w = 0]
by α we have

Pr
r

[sgn(〈X, r〉) 6= ri]

= Pr
r

[sgn(Xiri + w) 6= ri]

= Pr
r

[sgn(Xiri + w) 6= ri|w 6= 0] · Prr[w 6= 0] + Pr
r

[sgn(Xiri + w) 6= ri|w = 0] · Prr[w = 0]

= Pr
r

[sgn(w) 6= ri] · (1− α) + Pr
r

[Xi = −1] · α

=
1

2
· (1− α) + Pr

r
[Xi = −1] · α because w and ri are independent

Since Xi is a fixed bit independent of r, Prr[Xi = −1] is either 0 or 1. Thus we see that

Pr
r

[sgn〈X, r〉 6= ri] =

{
1
2 · (1− α) if Xi = +1
1
2 · (1− α) + α = 1

2 · (1 + α) if Xi = −1

Now using the definition of α and Stirling’s approximation, we see that for some absolute
constant c′,

α = Pr
r

[w = 0] = Pr
r

[
∑
j 6=i

Xjrj = 0] =

(
n−1

(n−1)/2
)

2n−1
∼ c′√

n

Choosing c = c′/2, we obtain the claimed statement.
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Proof. (Of Claim 22.7) By Claim 22.6, we know bounds on the probability with which row
Rj contributes to ∆(Y,Z). Since there are N rows, using linearity of expectation, we have

E[∆(Y,Z)]

{
≤ N

2 −
cN√
n

if Xi = 1

≥ N
2 + cN√

n
if Xi = −1

Also, the rows are all independent, So using Chernoff’s bounds with N =
(
2
√
n
c

)2
= 4n

c2

gives the claimed statement.
Applying Chernoff Bound: Details. Let Wj be a 0-1 indicator variable for whether the

jth row contributes to ∆(Y, Z), and let W =
∑

jWj = ∆(Y,Z). Claim 22.6 gives bounds
on the probability that each Wj = 1, depending on whether or not Xi = 1. Now from
Chernoff bound,

Pr[|W − E[W ]| > ε] ≤ e−2ε2/N

We choose N =
(
2
√
n
c

)2
= 4n

c2
.

If Xi = −1, then E[W ] ≥ N
2 + cN√

n
= N

2 + 2
√
N . So

Pr[W <
N

2
+
√
N ] ≤ Pr[|W − E[W ]| >

√
N ] ≤ e−2 < 1/3.

Similarly, if Xi = 1, then E[W ] ≤ N
2 −

cN√
n

= N
2 − 2

√
N . So

Pr[W >
N

2
−
√
N ] ≤ Pr[|W − E[W ]| >

√
N ] ≤ e−2 < 1/3.
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