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22. The Gap-Hamming Problem
Lecturer: Meena Mahajan Scribe: Abhishek Dang

In this and the next class, we examine the Gap Hamming problem and show that it requires
Q(n) communication.

22.1 Problem Statement

Given z,y € {—1,1}" with the promise that [{(x,y)| > /n, decide whether (z,y) <
—yv/nor > y/n. (If the input does not satisfy the promise, any outcome is acceptable.)

That is
-1 if (z,y) < —vn
GHD,,(z,y) = ¢ 1 if (x,y) > +/n
anything otherwise
The following reformulation of the problem justifies the nomenclature. Denoting Hamming
distance (the number of coordinates where x,y disagree) by A(x,y), we can see that

<Q?,y> =n-= 2A<$,y>

Thus,
n
@9 > Vi = A y)
So the problem can be reformulated as follows: Given strings x, y satisfying the promise
that the Hamming distance between them is not very close to (not within y/n/2 of) n/2,
decide whether it exceeds or is less than n/2.

| >

S

-1 if A(z,y)
1 if Az, y)

+
SERE

GHD,,(z,y) = {

IN 1V
IS I3

with the indicated promise.

Generalized problem statement

More generally, we may consider any threshold ¢ and any gap g. Under the promise that
(x,y) is not within +g of ¢, decide whether or not it exceeds t. Denote this generalised

problem on length n strings by GHD,, ; 4.
-1 if{z,y) <t-—
GHDy, 4 4(z,y) = ) (@) 9
+1 if (z,y) >t+g

With this notation, the problem we introduced above is GHD,, § /5.
While the general problem is of interest, we show that it reduces to GHD with only a
polynomial blowup in n.
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Claim 22.1. GHDy 14 reduces to GHD,, 40,4

Proof. We simply pad the given strings with k = [¢| additional bits, as follows.

T — X = | x | -1...—1]

y  — Y = | y | +1... 41|

where we choose to use one of the signs uniformly in the latter padding. Hence (X,Y) =
(x,y) — k or (x,y) + k depending on this choice. We pad y with —1s when ¢t < 0 and
with +1s when ¢ > 0. In either case we have (X,Y) = (z,y) — t, giving a reduction to
GHD,, { y.0.,- O

Claim 22.2. GHD,, 0,4 reduces to GHD 5 for a suitable N < n?/g%.

Proof. This reduction is also achieved by padding, but this time by a number of copies of
the input.
If g > \/n, we simply use the same inputs for the GHD,, ; 5 problem. (So N = n.)
Otherwise consider the map

T — X = 2.7 Y — Y = %y...y.

This amplifies the gap, because (X,Y) = k(z,y). We would be done if kg > VN = Vkn,
so we choose k =n/g? (and N = n?/g?). O

Henceforth, we restrict attention to the special case GHD,, s and denote it by GHD,,
or just GHD.

22.2 Motivation

The gap-Hamming distance problem (GHD) was proposed by Indyk and Woodruff [TW05]
as a means to understand the complexity of several streaming tasks. We would be in-
terested in the applications of GHD to computing frequency moments of data streams.
More specifically, we briefly study how lower bounds on the communication complexity of
gap-Hamming distance imply lower bounds on the memory requirements of estimating the
number of distinct elements in a data stream (denoted Fp). (Recall the discussion in Lecture
5.)

For any stream of n numbers from [m], we know that Fy can be found by a 1-pass algo-
rithm using O(m) space, and can be aproximated by a 1-pass algorithm using O(log m, logn)
space ([AMS99]). Further, ignoring polylogm factors, it was shown in [BJKS04] that a 1-
pass algorithm can e-approximate Fy in space O(1/¢2). A natural question to ask is whether
the dependence on ¢ can be improved. Indyk and Woodruff showed in [ITW05] that it cannot;
a quadratic dependence on 1/¢ is necessary. We will see the proof of this result.
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22.3 Streaming lower bounds from GHD lower bounds

Theorem 22.3 (Indyk,Woodruff [IW05]). Suppose there exists a randomized 1-pass algo-
rithm A that uses space S, and with probability at least 2/3, estimates Fy within error at
most e. Then there exists a 1-way communication protocol for GHDy with M = [1/(16¢?)],
with error less than or equal to 1/3, and complexity S + O(log1/¢).

Proof. For the purpose of this proof, we use the Hamming distance formulation of the
GHDy; problem.

__ The algorithm A, on an input stream, uses some randomness 7 and outputs a number
Fy. The algorithm satisfies the following:

— 1
Pr{|Fo — Fo| > eFo] < 5
T

Consider an instance of GHDy; where Alice and Bob are given strings x,y € {0,1}M
respectively. Alice constructs from z a stream (or set) a, of numbers in [M], where i € a,
iff z; = 1. Similarly Bob constructs from y a stream a,. Alice runs A on a, and sends the
resulting state of A to Bob. Furthermore, she sends across the number of 1’s in z. Bob
resumes A on a,, thus computing an estimate Fy for F. Bob accepts if

~ M
28 —[eli =yl > -
Cost: Alice needs to send S bits for the state of A, and [log M| bits for the number of
1’s in z. So this protocol has cost O(S + log(1/¢)).
Analysis: Denote the cardinalities of the sets a, \ ay, a; N ay, and ay \ az by a,b,c
respectively. We write,

Fop=a+b+c

H=A(z,y)=a+c

H<FK<M

ag = |zl =a+b, ay=|y=b+c

H=2F—|zh —|lyh =2Fy - W (say)
E:=2F, — |z|1 — |y, =2Fy - W

(1—e)Fy < Fy < (1+¢)F (by assumption about A)

H—2cFy < E< H+2F,

Case 1: H > % + @ Then, since Fy < M,

M VM

We want E > M /2 in this case. So we need @ > 2eM.
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Case 2: H < % — @ Then

M VM
E§H+26F0< (2—2> +2eM

We want E < M/2 in this case. So again we need @ > 2eM.

So, the theorem holds for @ > 2e M, that is, M < ﬁ. O

Corollary 22.4. If the randomized one-way communication complexity of GHD\ satisfies
R'™%%(GHDy) = Q(M)

then any e-approzimate 1-pass streaming algorithm for Fy needs Q(1/€2) space.

22.4 1-way lower bound for GHD

We now show the 1-way lower bound for GHD. This, along with Corollary 22.4, tells us that
1-pass streaming algorithms need €2(1/£2) space to approximate Fy. We follow the proof
from [JKSO08].

Theorem 22.5 ([Woo04, JKS08]).
RIW4Y(GHDy) = Q(N)

Proof. We give a reduction from the INDEX problem. As has been seen earlier in the course
(Lectures 9,10),

1-
Ry 75" (INDEX) > 2(loge)d%n = Q(n)

Say we have a protocol 1I for GHD; we show how this can also be used to solve INDEX.

Consider an instance of INDEX, with Alice having as input z € {0,1}" and Bob an
index i € [n]. We consider only the case when n is odd; the other case naturally reduces to
this one, and we invoke this assumption in the analysis.

Alice and Bob use public coins to choose an N x n matrix R with 41 entries (we
will specify N a bit later). Let (Rj)é\’:l denote the rows of R. Alice (naturally) changes
her x € {0,1}™ to X € {1,—1}" and then further computes Y = (Y1,...,Yy) where
Y; = sgn((X, R;)). (Recall that n is odd, so (X, R;) # 0. We use the convention that
sgn(a) = 1if a > 0, —1 otherwise. ) Bob picks out the i*® column of R; denote this column
by Z. Alice and Bob then run the GHD protocol II on Y, Z, and report the same outcome
(mapping back +1 to {0,1}) for the given instance of INDEX.

Let us analyze the probability that this protocol answers the INDEX instance correctly.

Let r denote a row of R. Then r is a uniformly random element of {£+1}". Notice that
r contributes to A(Y, Z) exactly when sgn(X,r) # r;. That is,

A(Y, Z) = [{j | sen({X, Rj) # Rji)}|

We will show below the following two claims.
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Claim 22.6. There exists a constant ¢ > 0 such that for every X € {£1}" and every
i€ [n],

> 1+L if X5 =—
P X i < 1Y
re{j:rl}”[sgn(< ,7)) # 7i { < %_ﬁ if X; =

Claim 22.7. For a suitable chosen N € ©(n), for every X € {£1}" and every i € [n], for
Y, Z set as above,

Pr [A(Y,Z) >N +\/JV] >2 ifX; =1
Re{+1}Nxn 2

Pr [A(Y, 7)< N \/N]
Re{+1}Nxn 2

Y

2 ifX; =

Assuming these claims, now we can conclude that for every input x,7 to INDEX, with
probability at least 2/3 over the choice of R, GHD (Y, Z) correctly answers INDEX(x, 7).
The protocol we have designed for INDEX is also one-way. Its cost is the same as the

cost of II. Hence
Q(n) < RV (INDEX,,) < RIVaY (GHDYy)

We now prove the two claims.
Proof. (Of Claim 22.6) Let us write
(X,r) = X;ri + w where w = ZXjTj
J#i
Remember that we had assumed n to be odd, so w # 0 = |w| > 2. Thus if w # 0, then

the first term X;r; is irrelevant in deciding sgn(X,r). We use this fact. Denoting Pr,[w = 0]
by a we have

Prisgn((X,r)) # ri]

= Prisgn(X;ri +w) # 7]
= Prsgn(X;r; + w) # rilw # 0] - Pry[w # 0] 4+ Pr[sgn(X;r; + w) # rijw = 0] - Pry[w = 0]
= Pr[sgn(w) # 7] (1 —a)+Pr[X; =-1] -«
1
= 3 (1—a)+ Pr[X = —1]-a because w and r; are independent
Since Xj is a fixed bit independent of r, Pr,[X; = —1] is either 0 or 1. Thus we see that
1 .
P 5-(1—a) it X; =+1
Prisgn(X,r) # 7] = { L i-a)+a=1-(1+a) ifx;=-1

Now using the definition of o and Stirling’s approximation, we see that for some absolute
constant ¢,

n—1
((n 1)/2) d
o= Prf =Pi)_ Xjrj=0]= 5 ~ —=
JFi 2 \/ﬁ
Choosing ¢ = ¢/ /2, we obtain the claimed statement. O
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Proof. (Of Claim 22.7) By Claim 22.6, we know bounds on the probability with which row
R; contributes to A(Y, Z). Since there are N rows, using linearity of expectation, we have

<J-L X, =1
E[A(Y,Z)}{>Ji N £ X = 1
_7+ﬁ I X;=—

Also, the rows are all independent, So using Chernoff’s bounds with N = ( Q‘f) = 82

gives the claimed statement.

Applying Chernoff Bound: Details. Let W; be a 0-1 indicator variable for whether the
Jjth row contributes to A(Y,Z), and let W =3, W; = A(Y, Z). Claim 22.6 gives bounds
on the probability that each W; = 1, depending on whether or not X; = 1. Now from
Chernoff bound,

Pr|W —E[W]| > ¢] < e~ 2*/N

We choose N = (2‘f>
If X; = —1, then E[W] > g+%= J +2VN. So

eIV < %+ VN] < Pr][W — E[W]| > VN] < e 2 < 1/3.
PV > & VN] < Prl[W — E[W]| > VN] < e % < 1/3.
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