PCP and Limits of Approximation Algorithms - I 4 Mar, 2015

Problem Set 1

Due Date: 17 Mar (Tue), 2015

Collaboration is encouraged, but all writeups must be done individually.
Indicate names of all collaborators.

The length of the problem statement is NOT reflective of the problem difficulty.

Refering sources other than the lecture notes is discouraged, since for some of the problems
a Google search will reveal the solution. But if you do use an outside source (text books,
lecture notes, any material available online), do mention the same in your writeup.

. Logarithmic randomness is necessary

Show that if SAT € PC’PL%[r(n), O(1)] for r(n) = o(logn), then P = NP.

. [linearity test of 3 functions]

Consider the following modification of the BLR-linearity test towards testing linearity of 3
functions f,g,h: {0,1}" — {1, —1} simultaneously.

BLR-3-Test/9" : “ 1. Choose y, z €g {0,1}" independently

2. Query f(y),9(z), and h(y + z)
3. Accept if f(y)g(2)h(y + 2) = 1. "

Clearly, if the three functions f, g, h are the same linear function, then the above test accepts
with probability 1. Suppose one of the three functions f, g, h (say f) and its negation (i.e.,
—f) is d-far from linear (this means max, |fo| < 1 — 24), show that

Pr[BLR-3-Test/9" rejects | > 4.
y’z

['mgesn swoo Lew (0 () - (wX) > ("0 X) Ayrenbout zremuyog-Aypney) ot], Jury]

[recycling queries in linearity test]

In lecture, we analyzed the soundness of the BLR-Test to show that if f is (1/2 — ¢)-far from
linear, then the test accepts with probability at most 1/2 4 €. If we repeat this test k times,
we obtain a linearity test which makes 3k queries and has the following property: if f is
(1/2 — ¢)-far from linear, then the test accepts with probability at most (1/24-¢)¥ = 1/2%44.
Thus every additional 3 queries improves the soundness by a factor of 1/2. In this problem,
we show that this can be considerably improved.

Assume that both f and —f are (1 — ¢)/2-far from linear (i.e., max, |fa| < €). Consider the
following linearity test (parameterized by k).

Test£ : “1. Choose 21,29,...,2x €g {0,1}"
2. For each distinct pair (i,7) € {1,...,k}
Check if f(z)f(z;)f(zi + 2;) = 1.
3. Accept if all the tests pass.

Observe that this test makes at most k + (g) queries. We will show below that the soundness

k
of the test is roughly 2_(2), thus showing that every additional query improves the soundness
by a factor of 1/2 (almost).

Assume that both f and —f are (1 — ¢)/2-far from linear.

(a) Show that the acceptance probability of the above test is given by

Prlacc] = E.,. ., H (1 + f(zi)f(Zj)f(Zi + zj)>

1,3

= —= > Eea | I FGFGE G+ 2)

SQ([S]) (i,5)€S

(b) Consider any term in the above summation corresponding to a non-empty S (i.e.,
Eerzm [jes f(zi) f(2) f(zi + z])]) Suppose (1,2) € S. Show that

Ezl,...,zk H f(zz)f(zj)f(zl + Zj)
(1,9)€S
is upper bounded by E., ., [f(z1+22)g(21)h(22)] for some functions g, h : {0,1}"™ — {0, 1}.
[paziuurxewt
ST uorje}dadxo o1} Jey) JeY} YONS %2 pue Iz Wey) IS0 SO[CRLILA O} [[R XIJ :JUIH]
(c) Use the result of Problem 2 to conclude that the expression in the above (for non-empty
sums) is at most ¢ (i.e., E;, ., [H(i,j)es f(za) f(z5) f(z + Zj)} < ¢ for non-empty S).
k
2

(d) Conclude that Prlacc| is at most 2 (2) 4 ¢

4. [polynomial decoding: short list of polynomials]

Let A: F™ — F be any function (not necessarily a low degree polynomial). Let p1,pa,...,p; :
F™ — F be the list of all degree d polynomials such that Pr,[A(z) = pi(x)] > 0. In other
words, p1,...,p: is the list of all polynomials that have each agreement at least § with the
function A. Assume § > 2\/c%. Prove that ¢t < 2/§. Hence, there are not too many
low-degree polynomials that have considerable agreement with two polynomials.

[(ettuaor] [oddiyz-zyremipg) sjutod
Jo uoryoery b/p gsowr e uo oo1de erwouijod 00130p MO[OM) JRT} JOR] OY) OS[) :JUIH]

2

5. [low degree testing to list of polynomials]

In lecture, we showed that if there is a list of low-degree polynomials that agrees with the
space oracle then low-degree test theorem is true. In this problem, we will show the converse
of this statement.

Suppose there exists a function f: (0,1) — (0,1) such that the following is true.
“[Low Degree Test Theorem| For every function A : F™ — F and A : S — P, 4 that satisfies

PriA(s)(x) = A(z)] =,

8,@
we have

Pr[A(z) = Q(@)] = ()
for some polynomial @ of degree at most d (end of Low Degree Test Theorem)”
(recall that we proved the above in lecture for the function f(y) =2 —¢)

Let g = y/d/q and § € (g0,1). Set &' = f(0 —e9) — €9 > 2¢9. Prove that for any function
B :F™ — F, there exists a list of at most ¢t < 2/§" polynomials Q1, ..., Q; : F™ — F of degree
at most d such that

Pr [B(s)(z) # B(x) A (3i,Qils = B(s))] > 1 — 0.

SES]",x€ES

You may assume the result of Problem 4. We will prove the above statement as follows.
Suppose for contradiction that the statement if false.

Let Q1,Q2,...,Q; be the list of polynomials that have at least ¢’ agreement with B. By
Problem 4, ¢t < 2/46’. Suppose the statement was false. Consider the following 3 events for a
random s € §* and z € s.

e C:B(s)(x)=B(x)
e P:3diet],B(x)=Qi(z)
e S:Ji€t],B(s) =Qils

(a) Show that Pr[C' A S] > 4. S denotes the event “not S”

(b) Argue using Schwartz-Zippel Lemma, Pr[C' A P|S] < &.
) Conclude from the previous two parts that Pr[C A P] > § — &o.
)

Construct a new oracle B’ : F* — F as follows: let)’ be an arbitrary polynomial of
degree exactly d + 1. Set B'(x) to be Q'(z) on all points x that satisfy P and B(x)
elsewhere. Let the space oracle of B’ be the same as that of B. Show from the previous
part that

Pr [B(s)(z) = B'(z)] > ¢ — eo.

(e) Conclude from the low-degree test theorem that there exists a polynomial @ of degree
at most d such that Pr[Q'(z) = Q(z)] > f(d — ep). Argue that Q and Q" are distinct
polynomials and hence,

PrB/(2) = Q(2) A B'(2) # B(a)] < PrlQ(2) = Q)] < = < .

(f) Argue that Pr[B(z) = Q(x) = B'(z)] > f(0 —e9) —e0 = 0.
(g) Conclude from above that there exists a i € [t] such that Q = Q; (i.e., @ and Q; are
identical polynomials)

(h) Conclude that ¢’ < Pr[B(z) = Q;(z) = B'(z)] < Pr[Q'(z) = Q(z)] < &, which is a

contradiction.

