Problem Set 1

- Due Date: 17 Mar (Tue), 2015
- Collaboration is encouraged, but all writeups must be done individually.
- Indicate names of all collaborators.
- The length of the problem statement is NOT reflective of the problem difficulty.
- Refering sources other than the lecture notes is discouraged, since for some of the problems a Google search will reveal the solution. But if you do use an outside source (text books, lecture notes, any material available online), do mention the same in your writeup.

1. Logarithmic randomness is necessary

Show that if $SAT \in PCP_{1,\frac{1}{2}}[r(n), O(1)]$ for $r(n) = o(\log n)$, then P = NP.

2. [linearity test of 3 functions]

Consider the following modification of the BLR-linearity test towards testing linearity of 3 functions $f, g, h : \{0, 1\}^n \to \{1, -1\}$ simultaneously.

BLR-3-Test^{f,g,h}: "1. Choose
$$y, z \in_R \{0,1\}^n$$
 independently
2. Query $f(y), g(z)$, and $h(y+z)$
3. Accept if $f(y)g(z)h(y+z) = 1$.

Clearly, if the three functions f, g, h are the same linear function, then the above test accepts with probability 1. Suppose one of the three functions f, g, h (say f) and its negation (i.e., -f) is δ -far from linear (this means $\max_{\alpha} |\hat{f}_{\alpha}| \leq 1 - 2\delta$), show that

$$\Pr_{y,z}[\mathsf{BLR-3-Test}^{f,g,h} \text{ rejects }] \geq \delta.$$

[Hint: The Cauchy-Schwarz inequality $(\sum a_i b_i)^2 \leq (\sum a_i^2) \cdot (\sum a_i^2)$ may come useful.]

3. [recycling queries in linearity test]

In lecture, we analyzed the soundness of the BLR-Test to show that if f is $(1/2 - \varepsilon)$ -far from linear, then the test accepts with probability at most $1/2 + \varepsilon$. If we repeat this test k times, we obtain a linearity test which makes 3k queries and has the following property: if f is $(1/2 - \varepsilon)$ -far from linear, then the test accepts with probability at most $(1/2 + \varepsilon)^k = 1/2^k + \delta$. Thus every additional 3 queries improves the soundness by a factor of 1/2. In this problem, we show that this can be considerably improved. Assume that both f and -f are $(1 - \varepsilon)/2$ -far from linear (i.e., $\max_{\alpha} |\hat{f}_{\alpha}| \leq \varepsilon$). Consider the following linearity test (parameterized by k).

Test^f_k: "1. Choose
$$z_1, z_2, \ldots, z_k \in_R \{0, 1\}^n$$

2. For each distinct pair $(i, j) \in \{1, \ldots, k\}$
Check if $f(z_i)f(z_j)f(z_i + z_j) = 1$.
3. Accept if all the tests pass. "

Observe that this test makes at most $k + \binom{k}{2}$ queries. We will show below that the soundness of the test is roughly $2^{-\binom{k}{2}}$, thus showing that every additional query improves the soundness by a factor of 1/2 (almost).

Assume that both f and -f are $(1 - \varepsilon)/2$ -far from linear.

(a) Show that the acceptance probability of the above test is given by

$$\Pr[\mathsf{acc}] = \mathbb{E}_{z_1,\dots,z_k} \left[\prod_{i,j} \left(\frac{1 + f(z_i)f(z_j)f(z_i + z_j)}{2} \right) \right]$$
$$= \frac{1}{2^{\binom{k}{2}}} \cdot \sum_{S \subseteq \binom{[k]}{2}} \mathbb{E}_{z_1,\dots,z_k} \left[\prod_{(i,j) \in S} f(z_i)f(z_j)f(z_i + z_j) \right]$$

(b) Consider any term in the above summation corresponding to a non-empty S (i.e., $\mathbb{E}_{z_1,\ldots,z_k}\left[\prod_{(i,j)\in S} f(z_i)f(z_j)f(z_i+z_j)\right]$). Suppose $(1,2)\in S$. Show that

$$\mathbb{E}_{z_1,\dots,z_k}\left[\prod_{(i,j)\in S}f(z_i)f(z_j)f(z_i+z_j)\right]$$

is upper bounded by $\mathbb{E}_{z_1,z_2}[f(z_1+z_2)g(z_1)h(z_2)]$ for some functions $g,h: \{0,1\}^n \to \{0,1\}$. ['pəzimixem

[Hint: Fix all the variables other than z_1 and z_2 such that the expectation is

- (c) Use the result of Problem 2 to conclude that the expression in the above (for non-empty sums) is at most ε (i.e., $\mathbb{E}_{z_1,\ldots,z_k}\left[\prod_{(i,j)\in S} f(z_i)f(z_j)f(z_i+z_j)\right] \leq \varepsilon$ for non-empty S).
- (d) Conclude that $\Pr[\mathsf{acc}]$ is at most $2^{-\binom{k}{2}} + \varepsilon$.

4. [polynomial decoding: short list of polynomials]

Let $A: \mathbb{F}^m \to \mathbb{F}$ be any function (not necessarily a low degree polynomial). Let $p_1, p_2, \ldots, p_t : \mathbb{F}^m \to \mathbb{F}$ be the list of *all* degree *d* polynomials such that $\Pr_x[A(x) = p_i(x)] \geq \delta$. In other words, p_1, \ldots, p_t is the list of *all* polynomials that have each agreement at least δ with the function *A*. Assume $\delta \geq 2\sqrt{d/q}$. Prove that $t \leq 2/\delta$. Hence, there are not too many low-degree polynomials that have considerable agreement with two polynomials.

[(smm9d l9qqiS-ztrswd3d)] arioq

Init: Use the fact that two low degree polynomial agree on at most d/q fraction of d/q fraction of

5. [low degree testing to list of polynomials]

In lecture, we showed that if there is a list of low-degree polynomials that agrees with the space oracle then low-degree test theorem is true. In this problem, we will show the converse of this statement.

Suppose there exists a function $f: (0,1) \to (0,1)$ such that the following is true.

"[Low Degree Test Theorem] For every function $A: \mathbb{F}^m \to \mathbb{F}$ and $A: \mathcal{S}_k^m \to P_{m,d}$ that satisfies

$$\Pr_{s,x}\left[A(s)(x) = A(x)\right] \ge \gamma_s$$

we have

$$\Pr\left[A(x) = Q(x)\right] \ge f(\gamma)$$

for some polynomial Q of degree at most d (end of Low Degree Test Theorem)"

(recall that we proved the above in lecture for the function $f(\gamma) = \gamma^2 - \varepsilon$)

Let $\varepsilon_0 = \sqrt{d/q}$ and $\delta \in (\varepsilon_0, 1)$. Set $\delta' = f(\delta - \varepsilon_0) - \varepsilon_0 \ge 2\varepsilon_0$. Prove that for any function $B : \mathbb{F}^m \to \mathbb{F}$, there exists a list of at most $t \le 2/\delta'$ polynomials $Q_1, \ldots, Q_t : \mathbb{F}^m \to \mathbb{F}$ of degree at most d such that

$$\Pr_{\substack{s \in \mathcal{S}_k^m, x \in s}} [B(s)(x) \neq B(x) \land (\exists i, Q_i|_s \equiv B(s))] \ge 1 - \delta.$$

You may assume the result of Problem 4. We will prove the above statement as follows. Suppose for contradiction that the statement if false.

Let Q_1, Q_2, \ldots, Q_t be the list of polynomials that have at least δ' agreement with B. By Problem 4, $t \leq 2/\delta'$. Suppose the statement was false. Consider the following 3 events for a random $s \in \mathcal{S}_k^m$ and $x \in s$.

- C: B(s)(x) = B(x)
- $P: \exists i \in [t], B(x) = Q_i(x)$
- $S: \exists i \in [t], B(s) \equiv Q_i|_s$
- (a) Show that $\Pr[C \land \bar{S}] > \delta$. \bar{S} denotes the event "not S"
- (b) Argue using Schwartz-Zippel Lemma, $\Pr[C \land \bar{P}|\bar{S}] \leq \varepsilon_0$.
- (c) Conclude from the previous two parts that $\Pr[C \land \bar{P}] > \delta \varepsilon_0$.
- (d) Construct a new oracle $B' : \mathbb{F}^m \to \mathbb{F}$ as follows: let Q' be an arbitrary polynomial of degree exactly d + 1. Set B'(x) to be Q'(x) on all points x that satisfy P and B(x) elsewhere. Let the space oracle of B' be the same as that of B. Show from the previous part that

$$\Pr |B(s)(x) = B'(x)| > \delta - \varepsilon_0.$$

(e) Conclude from the low-degree test theorem that there exists a polynomial Q of degree at most d such that $\Pr[Q'(x) = Q(x)] \ge f(\delta - \varepsilon_0)$. Argue that Q and Q' are distinct polynomials and hence,

$$\Pr[B'(x) = Q(x) \land B'(x) \neq B(x)] \le \Pr[Q'(x) = Q(x)] \le \frac{d+1}{q} \le \varepsilon_0.$$

- (f) Argue that $\Pr[B(x) = Q(x) = B'(x)] \ge f(\delta \varepsilon_0) \varepsilon_0 = \delta'.$
- (g) Conclude from above that there exists a $i \in [t]$ such that $Q \equiv Q_i$ (i.e., Q and Q_i are identical polynomials)
- (h) Conclude that $\delta' \leq \Pr[B(x) = Q_i(x) = B'(x)] \leq \Pr[Q'(x) = Q(x)] \leq \varepsilon_0$, which is a contradiction.