These notes are based on the note due to Gopalan [\[Gop09\]](#page-3-0) and the lecture notes of Sudan [\[Sud12,](#page-4-0) Lectures 23-24].

Definition 0.1. Let $\ell \in \mathbb{Z}^{\geq 0}$ and $\delta \in (0,1)$. A code $\mathcal{C}: \Sigma^k \to \Sigma^n$ is said to be (ℓ, δ) -locally decodable if t *there exists a (probabilistic) decoder* D *such that on oracle access to any* $y\in\Sigma^n$ *that satisfies* $\Delta(y,\mathcal{C}(m))\leq\mathcal{C}(m)$ *δn, we have*

- $\bullet \ \forall i \in [k], \Pr[D^{y}(i) = m_{i}] \geq \frac{2}{3}.$
- *D* makes at most ℓ probes into y on any input *i* and internal random coins.

In these notes, we will discuss Efremenko's construction [\[Efr12\]](#page-3-1) of sub-exponential locally decodable codes using matching vector families.

1 Matching vector codes

Let \mathbb{F}_q be a finite field ($q > 2$) and $\gamma \in \mathbb{F}_q^*$ an element of order m in \mathbb{F}_q^* (hence, $m|(q-1)$). We will consider both the field \mathbb{F}_q and the ring $\mathbb{Z}_m = \mathbb{Z}/m\mathbb{Z}$ below.

 $\bf{Definition 1.1.}$ Let $n \in \mathbb{Z}^{\geq 0}$. For any set $L \subseteq \mathbb{Z}_m \setminus \{0\}$, $(\mathcal{U},\mathcal{V})$, a pair of f-long vector sequences in \mathbb{Z}_m^n (i.e., $\mathcal{U} = (u[1], \ldots, u[f])$ and $\mathcal{V} = (v[1], \ldots, v[f])$ where each $u[i], v[i] \in \mathbb{Z}_m^n$) is said to be an L-matching *vector family if the following conditions are true.*

- *For all i* \in $[f]$ *, u*[*i*] \cdot *v*[*i*] = 0*.*
- For all $i \neq j \in [f]$, $u[i] \cdot v[j] \in L$.

Grolmusz [\[Gro00\]](#page-3-2) showed that for composite *m*, there exist vector families where *f* is superpolynomial in *n*.

Theorem 1.2. Let m be a composite with t distinct prime factors. Then for every $n \in \mathbb{Z}^{\geq 0}$, there exists *an (explicit) construction of L-matching vector family in* \mathbb{Z}_m^n *satisfying* $\ell := |L| \leq (2^t-1)$ *and* $f \geq$ $\exp\left(\frac{(\log n)^t}{(\log \log n)}\right)$ $\frac{(\log n)^t}{(\log \log n)^{t-1}}$.

Efremenko [\[Efr12\]](#page-3-1) showed that this (explicit) construction of matching vector family can be used to construct $(\ell + 1, \frac{1}{3(\ell+1)})$ -locally decodable codes which has only a sub-exponential blowup. Prior constructions required an exponential blowup.

Theorem 1.3. Let \mathbb{F}_q be a finite field ($q > 2$) and γ an element of order m in \mathbb{F}_q^* . Let $(\mathcal{U}, \mathcal{V})$ be a L*matching vector family of f vectors in* \mathbb{Z}_m^n *where* $L\subseteq \mathbb{Z}_m\setminus\{0\}$ *and* $\ell:=|L|+1.$ *Then there exists an* $(\ell + 1, \frac{1}{3(\ell+1)})$ -locally decodable code $C_{\mathcal{U},\mathcal{V}} : \mathbb{F}_q^f \to \mathbb{F}_q^{(q-1)^n}$ *q .*

Observe that the blowup is $f \mapsto (q-1)^n$. Therefore, for constant *q*, the fact that Grolmusz's construction yields superpolynomial *f* implies that the blowup is at most sub-exponential.

The code $\mathcal{C}_{\mathcal{U},\mathcal{V}}$ will be a Reed-Muller-like code in the following sense. Based on the matching vector family $(\mathcal{U}, \mathcal{V})$ (in fact, just \mathcal{V}), we will define a set of monomials $\chi_i, i \in [f]$ as follows:

$$
\chi_i(x_1,\ldots,x_n):=\prod_{k=1}^n x_k^{v[i]_k}.
$$

Corresponding to any message $m \in \mathbb{F}_q^f$, we will construct the polynomial $P_m(x)$ as follows:

$$
P_m(x_1,\ldots,x_n):=\sum_{i\in[f]}m_i\chi_i(x_1,\ldots,x_n).
$$

The encoding of *m* will be the evaluation of the polynomial P_m on all points in $(\mathbb{F}_q^*)^n$. In other $\text{words}, \mathcal{C}_{\mathcal{U}, \mathcal{V}}(m) = (P_m(x))_{x \in (\mathbb{F}_q^*)^n}.$

We will use the matching vector $u[i]$ to decode m_i , the coefficient of the monomial χ_i (which was defined using the vector $v[i]$). First for some notation. Given two $x, y \in (\mathbb{F}_q^*)^n$, define $x \odot y \in$ $(\mathbb{F}_q^*)^n$ to be the vector obtained by component-wise product (i.e., $(x \odot y)_i = x_i y_i$). Given a vector $x \in (\mathbb{F}_q^*)^n$ and $h \in \mathbb{Z}_m$, let $x^h := (x_1^h, \ldots, x_n^h)$. Given a $a \in \mathbb{F}_q^*$ and a vector $u \in \mathbb{Z}_m^n$, let a^u be the vector in $(\mathbb{F}_q^*)^n$ defined as follows: $(a^u)_i := a^{u_i}$.

Let $B := \gamma^L := \{ \gamma^c \in \mathbb{F}_q^* | c \in L \}$. Observe that $1 \notin B$ since $0 \notin L$ and $|B| = |L| = \ell$. This immediately implies the following claim

Claim 1.4. *There exists elements* c_i , $i = 0, \ldots, \ell$ *in* \mathbb{F}_q *such that* $\sum_{h=0}^{\ell} c_h = 1$ *while for every* $\beta \in B$, $\sum_{h=0}^{\ell} c_h \beta^h = 0.$

Proof. Let *c*_{*i*}'s be the coefficients of the polynomial $\prod_{\beta \in B} \frac{(x-\beta)}{(1-\beta)}$ $\frac{(x-p)}{(1-\beta)}$.

 \Box

 \Box

We now define a "multiplicative line" through the point $x \in (\mathbb{F}_q^*)^n$ and direction $y \in \langle \gamma \rangle \subseteq$ $(\mathbb{F}_q^*)^n$ as follows:

$$
l_{x,y} = \{x \odot y^t \in (\mathbb{F}_q^*)^n | t \in \mathbb{Z}_m\}.
$$

The following claim shows that among the monomials $\{\chi_j\}_j \in [f]$, χ_i is the only monomial that is constant along any multiplicative line in the direction of $\gamma^{u[i]}.$

Claim 1.5. *For any i, j* \in [*f*], $x \in (\mathbb{F}_q^*)^n$ *and h* $\in \mathbb{Z}_m$ *, we have*

$$
\chi_j(x \odot \gamma^{hu[i]}) = \begin{cases} \chi_i(x) & \text{if } i = j, \\ \chi_j(x) \cdot \beta_{i,j}^h & \text{if } i \neq j \text{ where } \beta_{i,j} \in B. \end{cases}
$$

Proof. $\chi_j(x\odot\gamma^{hu[i]}) = \prod_k \left(x_k\gamma^{hu[i]_k}\right)^{v[j]_k} = \chi_j(x)\cdot\gamma^{h(u[i]\cdot v[j])}.$

We are now ready to define the local decoder *D* for the code $\mathcal{C}_{\mathcal{U},\mathcal{V}}$.

Decoder *D***:**

Input (oracle access): $y:(\mathbb{F}_q^*)^n\to \mathbb{F}_q$ such that there exists a $m\in\Sigma^k$ such that $\Delta(y,\mathcal{C}_\mathcal{U,V}(m))\leq \delta n$ Input (explicit): $i \in [k]$

- 1. Choose a random $x \in_R (\mathbb{F}_q^*)^n$ and query y at $x, x \odot \gamma^{u[i]}, x \odot \gamma^{2u[i]}, \ldots, x \odot \gamma^{\ell u[i]}.$
- 2. Output $\left(\sum_{h=0}^{\ell} c_h y\left(x \odot \gamma^{hu[i]}\right) \right) \cdot \chi_i(x)^{-1}.$

We will show that the above decoder proves (ℓ, δ) -local decodability of $\mathcal{C}_{\mathcal{U}, \mathcal{V}}$ for $\delta \leq \frac{1}{3(\ell+1)}$.

Since *x* is random in $(\mathbb{F}_q^*)^n$, so is $x\odot\gamma^{hu[i]}$ for each $h\in[\ell]$ (though they are not pairwise independent). Hence, by a union bound, we can assume that at the $\ell + 1$ points queried, with probability at least $1 - (\ell + 1)\delta \geq 2/3$, we have that *y* agrees with P_m . We now have

$$
\sum_{h=0}^{\ell} c_h y(x \odot \gamma^{hu[i]}) = \sum_{h=0}^{\ell} c_h P_m(x \odot \gamma^{hu[i]})
$$

\n
$$
= \sum_{h=0}^{\ell} c_h \sum_{j \in [f]} m_j \chi_j(x \odot \gamma^{hu[i]})
$$

\n
$$
= \sum_{h=0}^{\ell} c_h m_i \chi_i(x) + \sum_{h=0}^{\ell} c_h \sum_{j \in [f] \setminus \{i\}} m_j \chi_j(x) \beta_{i,j}^h
$$

\n
$$
= m_i \chi_i(x) + \sum_{j \in [f] \setminus \{i\}} m_j \chi_j(x) \sum_{h=0}^{\ell} c_h \beta_{i,j}^h
$$

\n
$$
= m_i \chi_i(x) .
$$

This completes the proof of [Theorem 1.3](#page-0-0)

2 Construction of matching vector families

Grolmusz's construction is based on the representation of *OR* using low-degree polynomial over **Z***m*.

Definition 2.1. Let $m \in \mathbb{Z}^{\geq 0}$. We say that $f : \{0,1\}^r \to \{0,1\}$ has a polynomial representation of degree *d over* \Z_m *, if there exists a polynomial* $p\in\Z_m[x_1,\ldots,x_r]$ *of degree* d *such that for all* $x\in f^{-1}(0)$ *, we have* $p(x)=0$ and for all $x\notin f^{-1}(1)$, we have $p(x)\neq 0.$ Furthermore, we will say that f 's representation has a *non-zero set of size* ℓ *if* $\ell = |\{\alpha \in \mathbb{Z}_m \setminus \{0\} | \exists x \in f^1(1), p(x) = \alpha\}|$.

Beigel, Barrington and Rudich showed the following about *OR*'s representation.

Theorem 2.2 (OR representation [\[BBR94\]](#page-3-3)). Let $m \in \mathbb{Z}^{\geq 0}$ have t distinct prime factors. For each $r \in$ **Z**≥⁰ *, there exists an (explicit) representation of the OR function of degree at most O*(*r* 1/*t*) *and non-zero set* α *f* size at most $(2^t - 1)$ over \mathbb{Z}_m *.*

Proof of [Theorem 1.2.](#page-0-1) Let $R \in \mathbb{Z}_m[x_1, \ldots, x_r]$ be the degree *d* multilinear polynomial representing *OR* with non-zero set *L* of size at most $(2^t - 1)$. For each $y \in \{0, 1\}^r$, construct the polynomial R_y as follows: $R_y(x_1,...,x_r) = R(x_1^{y_1},...,x_r^{y_r})$ where $x_i^{y_i} = x_i$ if $y_i = 0$ and $1 - x_i$ if $y_i = 1$. Just as R represents the function $x = \overline{0}$?, R_y represents the function $x = y$?. Let $R_y(x) = \sum_m R_y^m \cdot m(x)$ be the monomial expansion of the polynomial *Ry*.

Define *n* and *f* as follows:

$$
n = \sum_{i \le d} \binom{r}{i}, \qquad f = 2^r
$$

Observe that *n* denotes the number of (multilinear) monomials of degree at most *d* while *f* denotes the number of inputs in $\{0,1\}^r$. Hence, we can view each vector $v \in \mathbb{Z}_m^n$ as indexed by the monomials of degree at most *d*. We will now define a *L*-matching vector family (U, V) of length *f* in \mathbb{Z}_m^n . U and V will contain f vectors each (indexed by the elements of $\{0,1\}^r$).

- $\mathcal{U} = (u[x])_{x \in \{0,1\}^r}$ where $u[x]_m := m(x)$ (i.e, the evaluation of the monomial *m* at the point *x*).
- $V = (v[x])_{x \in \{0,1\}^r}$ where $v[x]_m := R_y^m$ (i.e., the coefficient of the monomial *m* in the polynomial R_y).

We now observe that

$$
u[x] \cdot v[y] = \sum_{m} u[x]_{m} \cdot v[x]_{m} = \sum_{m} m(x) R_{y}^{m} = R_{y}(x)
$$

$$
= \begin{cases} 0 & \text{if } x = y, \\ \in L, & \text{if } x \neq y. \end{cases}
$$

This completes the proof of [Theorem 1.2](#page-0-1) assuming [Theorem 2.2.](#page-2-0)

3 OR represention

In this section, we prove the BBR construction for the case when $m = 6$ and has two distinct primes 2 and 3. We need to construct a polynomial $R \in \mathbb{Z}_6[x_1,\ldots,x_r]$ of degree $O(\sqrt{r})$ that represents the OR function over *r* bits. More precisely, we need to constuct a polynomial $R \in \mathbb{Z}_6[x_1, \ldots, x_r]$ of degree $O(\sqrt{r})$ such that $R(x) = 0$ if the Hamming weight of x is 0 and non-zero otherwise. To this end, we will construct two polynomials $R_2 \in \mathbb{Z}_2[x_1, \ldots, x_r]$ and $R_3 \in \mathbb{Z}_3[x_1, \ldots, x_r]$ both of degree $O(\sqrt{r})$ such that if *x* has Hamming weight 0, then both $R_2(x) = 0$ and $R_3(x) = 0$ and if the Hamming weight is non-zero, at most one of $R_2(x)$ and $R_3(x)$ vanishes (and the other or both as the case may be are 1 (mod 2 and mod 3 respectively).

case may be are 1 (mod 2 and mod 3 respectively).
Let us construct *R*₂. Choose the smallest power of 2, larger than \sqrt{r} . In otherwords, let $a \in \mathbb{Z}^{\geq 0}$ such that $\sqrt{r} \leq 2^a < 2\sqrt{r}$. Consider the univariate polynomial $h(z) = 1 - {z-1 \choose 2^a}$ with rational coefficients. Clearly, $h(0) = 0$ while $h(1) = h(2) = \cdots = h(2^a - 1) = 1$. We make the following observations about *h*.

- *h* takes on only integral values at integral inputs. In fact, *h* (mod 2) has a period of 2*^a* . In other words, $h(z) = 0 \pmod{2}$ if $z = 0 \pmod{2^a}$ and $h(z) = 1 \pmod{2}$ otherwise.
- $\binom{z-1}{2^a}$ can be written as an integral linear combination of $\{\binom{z}{i}\}_{i=0}^{2^a}$. I.e., there exists integers $_2$ ^{*i*} can be written as an integral integrational combination or ι_i / i_j / $i=0$ c_i such that $\binom{(z-1)}{2^a}$ $\sum_{i=0}^{n-1} c_i \binom{z}{i}$. This can be proved by induction using the identity $\binom{n-1}{r}$ $\binom{n}{r} - \binom{n-1}{r-1}.$

To move from univariate to multivariate polynomials, we observe that the symmetric polynomials $S_i(x_1, \ldots, x_r) := \sum_{S:|S|=i} \prod_{j \in S} x_j$ satisfy the property that $S_i(x_1, \ldots, x_r) = {|\mathbf{x}| \choose i}$ $\binom{x}{i}$ where $|x|$ denotes the Hamming weight of *x*. Putting all these together, we get that the polynomial $R_2(x) = 1 - \sum c_i S_i(x)$ has the required properties.

the required properties.
 *R*₃ is constructed similarly using 3^b such that $\sqrt{r} \leq 3^b < 3\sqrt{ }$ *r*. We can now combine *R*² and *R*³ to obtain a single polynomial *R* using the Chinese remainder theorem.

References

- [BBR94] DAVID A. MIX BARRINGTON, RICHARD BEIGEL, and STEVEN RUDICH. *Representing Boolean functions as polynomials modulo composite numbers*. Comput. Complexity, 4:367–382, 1994. (Preliminary version in *24th STOC*, 1992). [doi:10.1007/BF01263424](http://dx.doi.org/10.1007/BF01263424).
- [Efr12] KLIM EFREMENKO. *3-query locally decodable codes of subexponential length*. SIAM J. Comput., 41(6):1694–1703, 2012. (Preliminary version in *41st STOC*, 2009). [eccc:TR08-069](http://eccc.hpi-web.de/report/2008/069), [doi:10.1137/](http://dx.doi.org/10.1137/090772721) [090772721](http://dx.doi.org/10.1137/090772721).
- [Gop09] PARIKSHIT GOPALAN. *A note on Efremenko's locally decodable codes*. Technical Report TR09-069, Elect. Colloq. on Comput. Complexity (ECCC), 2009. [eccc:TR09-069](http://eccc.hpi-web.de/report/2009/069).
- [Gro00] VINCE GROLMUSZ. *Superpolynomial size set-systems with restricted intersections mod 6 and explicit Ramsey graphs*. Combinatorica, 20(1):71–86, 2000. [doi:10.1007/s004930070032](http://dx.doi.org/10.1007/s004930070032).

 \Box

[Sud12] MADHU SUDAN. *[6.S897: Algebra and Computation](http://people.csail.mit.edu/madhu/ST12/)*, 2012. (A course on algebraic methods in computation at MIT, Spring 2012).