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Locally decodable codes

These notes are based on the note due to Gopalan [Gop09] and the lecture notes of Sudan [Sud12,
Lectures 23-24].

Definition 0.1. Let ` ∈ Z≥0 and δ ∈ (0, 1). A code C : Σk → Σn is said to be (`, δ)-locally decodable if
there exists a (probabilistic) decoder D such that on oracle access to any y ∈ Σn that satisfies ∆(y, C(m)) ≤
δn, we have

• ∀i ∈ [k], Pr [Dy(i) = mi] ≥ 2
3 .

• D makes at most ` probes into y on any input i and internal random coins.

In these notes, we will discuss Efremenko’s construction [Efr12] of sub-exponential locally de-
codable codes using matching vector families.

1 Matching vector codes

Let Fq be a finite field (q > 2) and γ ∈ F∗q an element of order m in F∗q (hence, m|(q− 1)). We will
consider both the field Fq and the ring Zm = Z/mZ below.

Definition 1.1. Let n ∈ Z≥0. For any set L ⊆ Zm \ {0}, (U ,V), a pair of f -long vector sequences in Zn
m

(i.e., U = (u[1], . . . , u[ f ]) and V = (v[1], . . . , v[ f ]) where each u[i], v[i] ∈ Zn
m) is said to be an L-matching

vector family if the following conditions are true.

• For all i ∈ [ f ], u[i] · v[i] = 0.

• For all i 6= j ∈ [ f ], u[i] · v[j] ∈ L.

Grolmusz [Gro00] showed that for composite m, there exist vector families where f is super-
polynomial in n.

Theorem 1.2. Let m be a composite with t distinct prime factors. Then for every n ∈ Z≥0, there exists
an (explicit) construction of L-matching vector family in Zn

m satisfying ` := |L| ≤ (2t − 1) and f ≥
exp

(
(log n)t

(log log n)t−1

)
.

Efremenko [Efr12] showed that this (explicit) construction of matching vector family can be
used to construct (`+ 1, 1

3(`+1) )-locally decodable codes which has only a sub-exponential blowup.
Prior constructions required an exponential blowup.

Theorem 1.3. Let Fq be a finite field (q > 2) and γ an element of order m in F∗q . Let (U ,V) be a L-
matching vector family of f vectors in Zn

m where L ⊆ Zm \ {0} and ` := |L| + 1. Then there exists an
(`+ 1, 1

3(`+1) )-locally decodable code CU ,V : F
f
q → F

(q−1)n

q .

Observe that the blowup is f 7→ (q − 1)n. Therefore, for constant q, the fact that Grolmusz’s
construction yields superpolynomial f implies that the blowup is at most sub-exponential.

The code CU ,V will be a Reed-Muller-like code in the following sense. Based on the matching
vector family (U ,V) (in fact, just V), we will define a set of monomials χi, i ∈ [ f ] as follows:

χi(x1, . . . , xn) :=
n

∏
k=1

xv[i]k
k .
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Corresponding to any message m ∈ F
f
q , we will construct the polynomial Pm(x) as follows:

Pm(x1, . . . , xn) := ∑
i∈[ f ]

miχi(x1, . . . , xn).

The encoding of m will be the evaluation of the polynomial Pm on all points in (F∗q)
n. In other

words, CU ,V (m) = (Pm(x))x∈(F∗q )n .
We will use the matching vector u[i] to decode mi, the coefficient of the monomial χi (which

was defined using the vector v[i]). First for some notation. Given two x, y ∈ (F∗q)
n, define x� y ∈

(F∗q)
n to be the vector obtained by component-wise product (i.e., (x � y)i = xiyi). Given a vector

x ∈ (F∗q)
n and h ∈ Zm, let xh := (xh

1 , . . . , xh
n). Given a a ∈ F∗q and a vector u ∈ Zn

m, let au be the
vector in (F∗q)

n defined as follows: (au)i := aui .
Let B := γL := {γc ∈ F∗q |c ∈ L}. Observe that 1 /∈ B since 0 /∈ L and |B| = |L| = `. This

immediately implies the following claim

Claim 1.4. There exists elements ci, i = 0, . . . , ` in Fq such that ∑`
h=0 ch = 1 while for every β ∈ B,

∑`
h=0 chβh = 0.

Proof. Let ci’s be the coefficients of the polynomial ∏β∈B
(x−β)
(1−β)

.

We now define a “multiplicative line” through the point x ∈ (F∗q)
n and direction y ∈ 〈γ〉 ⊆

(F∗q)
n as follows:

lx,y = {x� yt ∈ (F∗q)
n|t ∈ Zm}.

The following claim shows that among the monomials {χj}j ∈ [ f ], χi is the only monomial that is
constant along any multiplicative line in the direction of γu[i].

Claim 1.5. For any i, j ∈ [ f ], x ∈ (F∗q)
n and h ∈ Zm, we have

χj(x� γhu[i]) =

{
χi(x) if i = j,
χj(x) · βh

i,j if i 6= j where βi,j ∈ B.

Proof. χj(x� γhu[i]) = ∏k

(
xkγhu[i]k

)v[j]k
= χj(x) · γh(u[i]·v[j]).

We are now ready to define the local decoder D for the code CU ,V .

Decoder D:
Input (oracle access): y : (F∗q)n → Fq such that there exists a m ∈ Σk such that ∆(y, CU ,V (m)) ≤ δn
Input (explicit): i ∈ [k]

1. Choose a random x ∈R (F∗q)
n and query y at x, x� γu[i], x� γ2u[i], . . . , x� γ`u[i].

2. Output
(

∑`
h=0 chy

(
x� γhu[i]

))
· χi(x)−1.

We will show that the above decoder proves (`, δ)-local decodability of CU ,V for δ ≤ 1
3(`+1) .

Since x is random in (F∗q)
n, so is x�γhu[i] for each h ∈ [`] (though they are not pairwise indepen-

dent). Hence, by a union bound, we can assume that at the `+ 1 points queried, with probability
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at least 1− (`+ 1)δ ≥ 2/3, we have that y agrees with Pm. We now have

`

∑
h=0

chy
(

x� γhu[i]
)
=

`

∑
h=0

chPm

(
x� γhu[i]

)
=

`

∑
h=0

ch ∑
j∈[ f ]

mjχj(x� γhu[i])

=
`

∑
h=0

chmiχi(x) +
`

∑
h=0

ch ∑
j∈[ f ]\{i}

mjχj(x)βh
i,j

= miχi(x) + ∑
j∈[ f ]\{i}

mjχj(x)
`

∑
h=0

chβh
i,j

= miχi(x) .

This completes the proof of Theorem 1.3

2 Construction of matching vector families

Grolmusz’s construction is based on the representation of OR using low-degree polynomial over
Zm.

Definition 2.1. Let m ∈ Z≥0. We say that f : {0, 1}r → {0, 1} has a polynomial representation of degree
d over Zm, if there exists a polynomial p ∈ Zm[x1, . . . , xr] of degree d such that for all x ∈ f−1(0), we have
p(x) = 0 and for all x /∈ f−1(1), we have p(x) 6= 0. Furthermore, we will say that f ’s representation has a
non-zero set of size ` if ` = |{α ∈ Zm \ {0}|∃x ∈ f 1(1), p(x) = α}|.

Beigel, Barrington and Rudich showed the following about OR’s representation.

Theorem 2.2 (OR representation [BBR94]). Let m ∈ Z≥0 have t distinct prime factors. For each r ∈
Z≥0, there exists an (explicit) representation of the OR function of degree at most O(r1/t) and non-zero set
of size at most (2t − 1) over Zm.

Proof of Theorem 1.2. Let R ∈ Zm[x1, . . . , xr] be the degree d multilinear polynomial representing
OR with non-zero set L of size at most (2t − 1). For each y ∈ {0, 1}r, construct the polynomial Ry

as follows: Ry(x1, . . . , xr) = R(xy1
1 , . . . , xyr

r ) where xyi
i = xi if yi = 0 and 1− xi if yi = 1. Just as R

represents the function x = 0̄?, Ry represents the function x = y?. Let Ry(x) = ∑m Rm
y ·m(x) be the

monomial expansion of the polynomial Ry.
Define n and f as follows:

n = ∑
i≤d

(
r
i

)
, f = 2r

Observe that n denotes the number of (multilinear) monomials of degree at most d while f denotes
the number of inputs in {0, 1}r. Hence, we can view each vector v ∈ Zn

m as indexed by the mono-
mials of degree at most d. We will now define a L-matching vector family (U ,V) of length f in Zn

m.
U and V will contain f vectors each (indexed by the elements of {0, 1}r).

• U = (u[x])x∈{0,1}r where u[x]m := m(x) (i.e, the evaluation of the monomial m at the point x).

• V = (v[x])x∈{0,1}r where v[x]m := Rm
y (i.e., the coefficient of the monomial m in the polyno-

mial Ry).
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We now observe that

u[x] · v[y] = ∑
m

u[x]m · v[x]m = ∑
m

m(x)Rm
y = Ry(x)

=

{
0 if x = y,
∈ L, if x 6= y.

This completes the proof of Theorem 1.2 assuming Theorem 2.2.

3 OR represention

In this section, we prove the BBR construction for the case when m = 6 and has two distinct primes
2 and 3. We need to construct a polynomial R ∈ Z6[x1, . . . , xr] of degree O(

√
r) that represents

the OR function over r bits. More precisely, we need to constuct a polynomial R ∈ Z6[x1, . . . , xr]
of degree O(

√
r) such that R(x) = 0 if the Hamming weight of x is 0 and non-zero otherwise. To

this end, we will construct two polynomials R2 ∈ Z2[x1, . . . , xr] and R3 ∈ Z3[x1, . . . , xr] both of
degree O(

√
r) such that if x has Hamming weight 0, then both R2(x) = 0 and R3(x) = 0 and if the

Hamming weight is non-zero, at most one of R2(x) and R3(x) vanishes (and the other or both as
the case may be are 1 (mod 2 and mod 3 respectively).

Let us construct R2. Choose the smallest power of 2, larger than
√

r. In otherwords, let a ∈ Z≥0

such that
√

r ≤ 2a < 2
√

r. Consider the univariate polynomial h(z) = 1 − (z−1
2a ) with rational

coefficients. Clearly, h(0) = 0 while h(1) = h(2) = · · · = h(2a − 1) = 1. We make the following
observations about h.

• h takes on only integral values at integral inputs. In fact, h (mod 2) has a period of 2a. In
other words, h(z) = 0 (mod 2) if z = 0 (mod 2a) and h(z) = 1 (mod 2) otherwise.

• (z−1
2a ) can be written as an integral linear combination of

{
(z

i)
}2a

i=0. I.e., there exists integers

ci such that ((z−1)
2a ) = ∑2a

i=0 ci(
z
i). This can be proved by induction using the identity (n−1

r ) =

(n
r)− (n−1

r−1).

To move from univariate to multivariate polynomials, we observe that the symmetric polynomials
Si(x1, . . . , xr) := ∑S:|S|=i ∏j∈S xj satisfy the property that Si(x1, . . . , xr) = (|x|i ) where |x| denotes the
Hamming weight of x. Putting all these together, we get that the polynomial R2(x) = 1−∑ ciSi(x)
has the required properties.

R3 is constructed similarly using 3b such that
√

r ≤ 3b < 3
√

r. We can now combine R2 and R3
to obtain a single polynomial R using the Chinese remainder theorem.
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