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Locally decodable codes

These notes are based on the note due to Gopalan [Gop(09] and the lecture notes of Sudan [Sud12,
Lectures 23-24].

Definition 0.1. Let £ € Z=%and 5 € (0,1). A code C : =X — " is said to be ({,6)-locally decodable if
there exists a (probabilistic) decoder D such that on oracle access to any y € X" that satisfies A(y,C(m)) <
on, we have

o Vi€ [k],Pr[DV(i) = m;] > 2.
o D makes at most £ probes into y on any input i and internal random coins.

In these notes, we will discuss Efremenko’s construction [Efr12] of sub-exponential locally de-
codable codes using matching vector families.

1 Matching vector codes

Let IF; be a finite field (7 > 2) and y € Fj an element of order m in I (hence, m|(q — 1)). We will
consider both the field IF; and the ring Z,, = Z/mZ below.

Definition 1.1. Let n € Z=°. Forany set L C Z,, \ {0}, (U, V), a pair of f-long vector sequences in Z!,
(e, U = (ul],...,u[f])and V = (v[1],...,v[f]) where each u[i], v[i| € Z1},) is said to be an L-matching
vector family if the following conditions are true.

e Foralli € [f], uli] -v[i] = 0.
e Foralli# j € [f], uli] - v]j] € L.

Grolmusz [Gro00] showed that for composite m, there exist vector families where f is super-
polynomial in .

Theorem 1.2. Let m be a composite with t distinct prime factors. Then for every n € Z=°, there exists

an (explicit) construction of L-matching vector family in Z, satisfying £ := |L| < (2! —1) and f >
(logn)'

P ((bglogn)H )

Efremenko [Efr12] showed that this (explicit) construction of matching vector family can be

used to construct (¢ +1, ﬁ )-locally decodable codes which has only a sub-exponential blowup.

Prior constructions required an exponential blowup.
Theorem 1.3. Let [Fy be a finite field (9 > 2) and vy an element of order m in . Let (U, V) be a L-
matching vector family of f vectors in Zl, where L C Z,, \ {0} and ¢ := |L| 4 1. Then there exists an

(€ +1, 5-7)-locally decodable code Cyy < Ff — Fy V)"
Observe that the blowup is f — (g —1)". Therefore, for constant g, the fact that Grolmusz’s
construction yields superpolynomial f implies that the blowup is at most sub-exponential.
The code Cy;y will be a Reed-Muller-like code in the following sense. Based on the matching
vector family (U, V) (in fact, just V), we will define a set of monomials yx;,i € [f] as follows:

n .
Xi(x1, ..., %) = H xz[l]k.
k=1



Corresponding to any message m € ]FJqr , we will construct the polynomial Py, (x) as follows:

Pu(x1,...,xn) i= Y mixi(x1,...,Xn).
i€[f]

The encoding of m will be the evaluation of the polynomial P, on all points in (IF;‘)” In other
words, Cyy y(m) = (Pm(x))xe(]F;)n.

We will use the matching vector u[i] to decode m;, the coefficient of the monomial y; (which
was defined using the vector v[i]). First for some notation. Given two x,y € (F)", definex ©y €
(IF7)" to be the vector obtained by component-wise product (i.e., (x ®y); = x;;). Given a vector
x € (Fy)"and h € Zy, let xl = (xf,...,xl). Givenaa € [F; and a vector u € Zj, let a" be the
vector in (IF})" defined as follows: (a"); := a".

Let B := 9L := {4° ¢ Filc € L}. Observe that 1 ¢ Bsince 0 ¢ L and |B| = |L| = £. This
immediately implies the following claim

Claim 1.4. There exists elements c;,i = 0,...,¢ in Fy such that Zi:o ¢, = 1 while for every B € B,
Yhoocnf" = 0.

Proof. Let c;’s be the coefficients of the polynomial [T E’{:ﬁ § . O
We now define a “multiplicative line” through the point x € (IF;)" and direction y € () C
(IF3)" as follows:

Ly ={x0y" € (F)"|t € Zn}.

The following claim shows that among the monomials {x;}; € [f], x; is the only monomial that is
constant along any multiplicative line in the direction of /.

Claim 1.5. Foranyi,j € [f], x € (IF;)" and h € Zy,, we have

' huli]y _ Xi(x) lfl - j’
xj(x © ™) {X].(x) .5?,], if i # j where B;; € B.

Proof. x;j(x © ") =TTy (xk”rh”[i]")vmk = x;j(x) - yulil-elD), O
We are now ready to define the local decoder D for the code Cy y.

Decoder D:
Input (oracle access): y : (]Fj;)” — IF; such that there exists a m € ¥k such that Ay, Cyyp(m)) < on
Input (explicit): i € [k]

uli] 2uli] Culi]

1. Choose a random x €r (IF7)" and query y at x, x © 1", x © ¢, ... x © oL

2. Output (Zﬁ:o chy (x ® ’yh”m)) xi(x0) 7L

_1

' 3(+1)"
Since x is random in (IF})", sois x ® "] for each 1 € [¢] (though they are not pairwise indepen-

dent). Hence, by a union bound, we can assume that at the ¢ 4 1 points queried, with probability

We will show that the above decoder proves (¢, §)-local decodability of Cy; ), for § <



atleast1 — (¢ +1)d > 2/3, we have that y agrees with P,,. We now have
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h=0 h=0 je[fI\{i}
=mxi(x)+ Y, mx(x) Y Bl
jelf\i} h=0
=m;xi(x) .

This completes the proof of Theorem 1.3

2 Construction of matching vector families

Grolmusz’s construction is based on the representation of OR using low-degree polynomial over
Zy.

Definition 2.1. Let m € Z=°. We say that f : {0,1}" — {0, 1} has a polynomial representation of degree
d over Z, if there exists a polynomial p € Zu[x1, ..., x,] of degree d such that for all x € f~1(0), we have
p(x) = Oand forall x ¢ f~1(1), we have p(x) # 0. Furthermore, we will say that f’s representation has a
non-zero set of size L if ¢ = |[{a € Z;, \ {0}|3x € f1(1), p(x) = a}|.

Beigel, Barrington and Rudich showed the following about OR’s representation.

Theorem 2.2 (OR representation [BBR94]). Let m € 729 have t distinct prime factors. For each r €
Z70, there exists an (explicit) representation of the OR function of degree at most O(r*/*) and non-zero set
of size at most (2! — 1) over Zy,.

Proof of Theorem 1.2. Let R € Zy[x1,...,x,] be the degree d multilinear polynomial representing

OR with non-zero set L of size at most (2" — 1). For each y € {0,1}", construct the polynomial R,
as follows: Ry(x1,...,x,) = R(x]',...,x{") where x?’i =ux;ify; =0and 1 —x; ify; = 1. Justas R
represents the function x = 0?, Ry represents the function x = y?. Let R, (x) = X, R;’ -m(x) be the
monomial expansion of the polynomial Ry.

Define n and f as follows:
r r
5 ()
i<d \!

Observe that n denotes the number of (multilinear) monomials of degree at most d while f denotes
the number of inputs in {0,1}". Hence, we can view each vector v € Z]}, as indexed by the mono-
mials of degree at most d. We will now define a L-matching vector family (/, V) of length f in Zj,.
U and V will contain f vectors each (indexed by the elements of {0, 1}").

o U = (u[x] )xefo,1)r Where u[x]m := m(x) (i.e, the evaluation of the monomial m at the point x).

o V = (v[x])scqo1}r where v[x]y := RY (i.e., the coefficient of the monomial m in the polyno-
mial Ry).



We now observe that

ulx] oyl = Y ulxlm - o[xlm = Y m(x)Ry = Ry(x)

m m
)0 ifx=y,
el ifx # .
This completes the proof of Theorem 1.2 assuming Theorem 2.2. O

3 OR represention

In this section, we prove the BBR construction for the case when m = 6 and has two distinct primes
2 and 3. We need to construct a polynomial R € Zg[xy, ..., x,] of degree O(1/r) that represents
the OR function over r bits. More precisely, we need to constuct a polynomial R € Zg[xy,. .., x/]
of degree O(4/r) such that R(x) = 0 if the Hamming weight of x is 0 and non-zero otherwise. To
this end, we will construct two polynomials Ry € Z;[x1,...,x;] and R3 € Z3[x1,...,x,] both of
degree O(4/r) such that if x has Hamming weight 0, then both Ry(x) = 0 and R3(x) = 0 and if the
Hamming weight is non-zero, at most one of Ry(x) and R3(x) vanishes (and the other or both as
the case may be are 1 (mod 2 and mod 3 respectively).

Let us construct R;. Choose the smallest power of 2, larger than /7. In otherwords, let a € 720
such that /7 < 2% < 2\/r. Consider the univariate polynomial h(z) = 1 — (') with rational
coefficients. Clearly, h(0) = 0 while h(1) = h(2) = --- = h(2” — 1) = 1. We make the following
observations about /.

e h takes on only integral values at integral inputs. In fact, 1 (mod 2) has a period of 2°. In
other words, h(z) =0 (mod 2) ifz =0 (mod 2?) and h(z) =1 (mod 2) otherwise.

e (*3') can be written as an integral linear combination of { (%) }?:0' Le., there exists integers

¢; such that ((22711)) =7, ¢i(5). This can be proved by induction using the identity (";1) =
()=o)
To move from univariate to multivariate polynomials, we observe that the symmetric polynomials
Si(x1,..., %) := Lg|s|=i [ ljes ¥; satisfy the property that S;(x1,...,xr) = ("f‘) where |x| denotes the
Hamming weight of x. Putting all these together, we get that the polynomial Ry (x) =1 — Y ¢;S;(x)
has the required properties.

R3 is constructed similarly using 3% such that Vr < 3b < 3,/r. We can now combine R, and R3
to obtain a single polynomial R using the Chinese remainder theorem.
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