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Lecturer: Prahladh Harsha Scribe: Uma Girish

The goal of these lecture notes will be to prove the Majority is Stablest theorem.
We set up some notation. Let Dn denote the random variable that is uniformly distributed on {−1, 1}n.
Let Gn denote the n-dimensional Gaussian with mean 0 and variance Id. We refer to the Gaussian
ρ-stability of a function f as GStabρ( f ) and the discrete stability as simply Stabρ( f ). We let a ≈ε b denote
that a = b + Oε(1) and a ≤ε b denote that a ≤ b + Oε(1).

Theorem 0.1. Given any balanced boolean function f : {0, 1}n → {0, 1} for which each variable has small
attenuated influence1, that is In f 1−ε

i ( f ) ≤ ε. Then it’s stability is at most* that of the majority. For all ρ ∈ [0, 1],
we have the following:

Stabρ( f ) ≤ε Stabρ(Majn) = 1− 2
π

arccos ρ

The proof idea will be to use a classical result of Borell on such an inequality for Gaussian measures and
then lift it to discrete measures using Invariance Principle.

Theorem 0.2 (Borell’s Isoperimetric Inequality2). Let f : Rn → [−1, 1]Rn → [−1, 1]Rn → [−1, 1] be a function with E
x∼Gn

f (x) = 0E
x∼Gn

f (x) = 0E
x∼Gn

f (x) = 0.

Then, the Gaussian ρ-stability of f is at most that of a half space through the origin. In other words,

GStabρ( f ) ≤ 1− 2
π

arccos ρ (1)

Proof of Theorem 0.1:

1. Given f statisfying the conditions of Theorem 0.1. Let us consider the function as a multilinear
polynomial so that we can define its values on arbitrary points in Rn. Now we have a notion of
Gaussian stability of f . Since f is multilinear, we see that

GStab( f ) = f (ρ) = Stab( f ) (2)

Ideally, we would be able to apply Theorem 0.2 to f and conclude that

Stabρ( f ) = GStabρ( f ) ≤ 1− 2
π

arccos ρ

f does satisfy E
x∼Gn

f (x) = 0, however, f as a multilinear polynomial does not satisfy the condition of

the range being in [−1, 1]. To set this right, we will consider the function f̃ defined by the truncation
of f to [−1, 1].

2. Let φ : R→ [−1, 1] be defined as follows.

φ(x) =


x if x ∈ (−1, 1)
1 if x ≥ 1
−1 if x ≤ −1

We define f̃ to be φ( f ). We would like to use (1) and (2) to conclude the theorem. For that we require:

(a) E
Gn

f̃ ≈ε E
Gn

f = 0

1The δ-attenuated influence of f is defined as ∑
S3i

δ|S| f̂ 2
S .

2In fact, something more general is true. The most* stable function of expectation α is the half space with Gaussian volume α.
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(b) GStab( f̃ ) ≈ε GStab( f ).

Suppose we have the above two facts, the proof is as follows. We let ˜̃f be f̃ that is changed at some
points so that ˜̃f : Rn → [−1, 1] and E[ ˜̃f ] = 0. For instance, we could invert the sign of f at a fraction
of points. We will prove the following chain of inequalitites.

Stab( f ) = GStab( f ) ≤ε GStab( f̃ ) ≤ε GStab( ˜̃f ) ≤ε 1− 2
π

arccos ρ

We will now justify each step of the above. The first one follows from (2), the second one follows
from (b). It is not too difficult to observe that since we have changed the values of f̃ ‘only a little’, we
have EGn

(
f̃ (x)− ˜̃f (x)

)2 ≤ Oε(1). From this, we will show that GStab( ˜̃f ) ≈ε GStab( f̃ ). Recall:

GStab( f̃ ) = E
x∼Gn
y∼ρx

f̃ (x) f̃ (y) GStab( ˜̃f ) = E
x∼Gn
y∼ρx

˜̃f (x) ˜̃f (y)

|GStab( f̃ )− GStab( ˜̃f )| ≤ E
x∼Gn
y∼ρx

∣∣ f̃ (x)
∣∣∣∣∣ f̃ (y)− ˜̃f (y)

∣∣∣+ E
x∼Gn
y∼ρx

∣∣ ˜̃f (y)
∣∣∣∣∣ f̃ (x)− ˜̃f (x)

∣∣∣
We bound the two terms on the right as follows.

E
x∼Gn
y∼ρx

| f̃ (x)|
∣∣ f̃ (y)− ˜̃f (y)

∣∣ ≤ √ E
x∼Gn

f̃ (x)2
√

E
y∼Gn

(
f̃ (y)− ˜̃f (y)

)2 ≤ Oε(1)

This is because E f̃ (x)2 = 1 since f̃ (x) ∈ [−1, 1]. Similarly, since ˜̃f (x) ∈ [−1, 1], we have:

E
x∼Gn
y∼ρx

| ˜̃f (y)|
∣∣ f̃ (x)− ˜̃f (x)

∣∣ ≤ √ E
y∼Gn

˜̃f (y)2
√

E
x∼Gn

∣∣ f̃ (x)− ˜̃f (x)
∣∣2 ≤ Oε(1)

Therefore, we have concluded that GStab( ˜̃f ) ≈ε GStab( f̃ ). The last step of the inequality is simply
Theorem 0.2 applied to ˜̃f .

GStab( ˜̃f ) ≤ 1− 2
π

arccos ρ

Thus it suffices to prove (a) and (b). We will instead prove the following:

E
x∼Gn

( f (x)− f̃ (x))2 ≤ Oε(1) (3)

Why does (a) and (b) follow from this?

(a) EGn | f − f̃ | ≤
√

EGn | f − f̃ |2 ≤ Oε(1). Hence, EGn f̃ ≤ε EGn f = 0.

(b) This calculation is almost identical to the one above. The only point of difference is in bounding
the first term. We can no longer say f (x) ∈ [−1, 1] to conclude E

x∈Gn
f (x)2 ≤ 1. However, we

anyway have E
x∈Gn

f (x)2 = 1 since f is a multilinear polynomial whose sum of squares of

coefficients is 1. Thus (b) follows from (3).

We have shown that (3) implies (a) and (b). We will now focus on proving (3), that is

E
x∼Gn

( f (x)− f̃ (x))2 ≤ Oε(1)
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3. We consider the function ψ : R→ [−1, 1] which measures the distance of a number to [−1, 1], i.e,

ψ(x) =


0 if x ∈ (−1, 1)
(x− 1)2 if x ≥ 1
(x + 1)2 if x ≤ −1

Observe that the quantity in (3) is precisely E
x∼Gn

ψ f (x). Furthermore, E
x∼Dn

ψ f (x) = 0. We now state

the Invariance Principle and see how it allows us to go between discrete measures and Gaussian
measures. We will use the following version of it3.

Theorem 0.3 (Invariance Principle). Let F be a n-variate multilinear polynomial of degree at most k.
Further assume that Var[F]Var[F]Var[F] ≤ 1 and In fi(F) ≤ εIn fi(F) ≤ εIn fi(F) ≤ ε for all i ∈ [n]. Assume ψ : R→ R is C4 with
‖ψ′′′′‖∞ ≤ C‖ψ′′′′‖∞ ≤ C‖ψ′′′′‖∞ ≤ C. Then, ∣∣∣ E

x∼Dn
ψF(x)− E

y∼Gn
ψF(y)

∣∣∣ . Ck9kεCk9kεCk9kε

This says that if a boolean function F has small influence and small degree (roughly ln 1
ε ), and ψ is a

‘reasonable’ function, then E
Gn
[ψ(F)] ≈ε E

Dn
ψ(F). If we can apply this to ψ and f , we can prove (3) as

follows.
Ex∼Gn( f (x)− f̃ (x))2 = E

x∼Gn
ψ f (x) ≈ε E

y∼Dn
ψ f (y) = 0

However, there are issues with applying this.

• ψ as defined earlier is not C4, because of sudden changes in the second derivative at −1 and 1.
However, it can be smoothened at these points. Furthermore, we can ensure that ‖ψ′′′′‖∞ ≤ B
for some absolute constant B. We will not do this calculation.

• The main issue is that f could have large degree. We would like to damp out the large degree
coefficients and this we do by first applying the noise operator T1−δ.

4.
Let g := T1−δ f for δ ≤ 1

ln ln 1
ε

≤ ε

Now g may still have large degree coefficients, but they are small in value. Firstly, we would like to
see that for this function g, we still have the implications (3) =⇒ (a),(b).

For the proof of (a) from (3), we only required that E
Gn

g = 0, which is still true, because the noise

operator doesn’t touch the zero-th level coefficient. We also have g(x) ∈ [−1, 1] on the vertices of the
hypercube since the noise operator averages f over vertices of the hypercube, on which f takes
values in {−1, 1}. Hence E

Gn
g(x)2 ≤ 1 and (b) follows. Furthermore, E

Dn
ψg(x) = 0. Also,

In fi(g) = ∑
S3i

ĝ2
S = ∑

S3i
(1− δ)2|S| f̂ 2

S ≤ ∑
S3i

(1− ε)|S| f̂ 2
S = In f 1−ε

i ( f ) ≤ ε

Suppose using all this and the invariance principle on ψ and g, we were able to conclude
Stabρ(g) ≤ε 1− 2

π arccos ρ. How do we transfer the same conclusion to f ? Recall

Stabρ(g) = ∑
S

ρ2|S|(1− δ)|S| f̂ 2
S

=⇒ Stabρ( f )− Stabρ(g) = ∑
S

ρ|S|
(
1− (1− δ)2|S|) f̂ 2

S

3See Ryan O’Donell’s book [?] on Page 363.
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We make the following observation.

For |S| ≥ 1√
δ

ρ|S| ≤ ρ1/
√

δ ≤
√

δ for δ not too small

For |S| ≤ 1√
δ

1− (1− δ)|S| ≤
√

δ

This will help us conclude that Stabρ( f ) ≤δ Stabρ(g) and thus obtain the theorem. However, we
cannot apply invariance to g yet as we still have large degree coefficients in g. But their coefficients
are small, so we truncate g as follows.

5.
Let h := g≤

1
δ2

Again, we would like to repeat the whole argument replacing the function with h. For (3) implies (a)
we require E

Gn
h = 0 which is still true, because we only truncated the large degree part. Also,

In fi(h) ≤ ε as we are only truncating terms in the expression for influence. We no longer have
h(x) ∈ [−1, 1] or E(ψ(h(x))) = 0. But we note that

‖g− h‖2
2 = ∑

|S|≥ 1
δ2

ĝ2
S = ∑

|S|≥ 1
δ2

(1− δ)2|S| f̂ 2
S ≤ ∑

|S|≥ 1
δ2

e−1/δ f̂ 2
S ≤ e−1/δ ≤ Oε(1)

From this, we can conclude that E
Gn

h(x)2 ≤ε E
Gn

g(x)2 ≤ε 1 and (b) follows with an additional ε loss.

Var(h) ≤ε 1. Furthermore,
|Eψh(x)| ≤ E(h(x)− g(x))2 ≤ Oε(1)

Thus, we have all the necessary conditions satsfied for h to apply the Invariance principle and
conclude that Stabρ(h) ≤ε 1− 2

π arccos ρ. How do we transfer the same conclusion to g? Since h is
the trunctation of g to ≤ 1

δ2 terms, the only difference in the stability of h and g comes from higher
order terms, whose mass is less than Oε(1), therefore Stabρ(g) ≤ε Stabρ(h). From point 4, we
conclude that Stabρ( f ) ≤ε Stabρ(g) ≤ε 1− 2

π arccos ρ.
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