
Analysis of Boolean Functions 11 Sep, 2017

Problem Set 1

• Due Date: 27 Sep, 2017

• Turn in your problem sets electronically (LATEX, pdf or text file) by email. If you submit handwritten solutions,
start each problem on a fresh page.

• Collaboration is encouraged, but all writeups must be done individually and must include names of all collabo-
rators.

• Refering sources other than the text book and class notes is strongly discouraged. But if you do use an external
source (eg., other text books, lecture notes, or any material available online), ACKNOWLEDGE all your sources
(including collaborators) in your writeup. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

• The points for each problem are indicated on the side.

• Problems 1–4 are from O’Donnell’s book and course.

• Be clear in your writing.

1. [Fourier expansion] (5× 6 = 30)

Compute the Fourier expansions of the following functions. Please give some indication of how you
arrived at the expansion; a bare formula does not suffice.

(a) The selection function Sel : {1,−1}3 → {−1, 1} which outputs x2 if x1 = −1 and outputs x3 if
x1 = 1.

(b) The indicator function 1{a} : {1,−1}n → {0, 1}, where a ∈ {1,−1}n.

(c) The density function corresponding to the product probability distribution on {1,−1}n in which
each coordinate has mean ρ ∈ [−1, 1];

(d) The inner product mod 2 function, IP2n : F2n
2 → {−1, 1} defined by IP2n(x1, . . . , xn, y1, . . . , yn) =

(−1)x·y. (Here x · y denotes the dot-product in the vector space Fn
2 .)

(e) The hemi-icosahedron function (also called the Kushilevitz function), HI : {1,−1}6 → {1,−1}, de-
fined as follows: HI(x) is 1 if the number of 1’s in x is 1, 2, or 6. HI(x) is −1 if the number of
−1’s in x is 1, 2, or 6. Otherwise, HI(x) is 1 if and only if one of the ten facets in the following
diagram has all three of its vertices 1:

(f) the complete quadratic function CQn : Fn
2 → {1,−1} defined by CQn(x) = (−1)(∑1≤i<j≤n xixj).

[Hint:DetermineCQn(x)asafunctionofthenumberof1sintheinputmodulo4.Youllwant
todistinguishwhethernisevenorodd.]

2. [Boolean dual and odd-even functions] (2 + 3 + 3 = 8)

The (boolean) dual of f : {1,−1}n → R is the function f † defined by f †(x) = − f (−x). The function
f is said to be odd if it equals its dual; equivalently, if f (−x) = − f (x) for all x. The function f
is said to be even if f (−x) = f (x) for all x. Given any function f : {1,−1}n → R, its odd part is
the function f odd : {1,−1}n → R defined by f odd(x) = ( f (x) − f (−x))/2, and its even part is the
function f even : {1,−1}n → R defined by f even(x) = ( f (x) + f (−x))/2.
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Figure 1: The hemi-icosahedron

(a) Express f̂ †(S) in terms of f̂ (S).

(b) Verify that f = f odd + f even and that f is odd (respectively, even) if and only if f = f odd (respec-
tively, f = f even).

(c) Show that
f odd = ∑

S⊆[n]
|S| odd

f̂ (S) χS, f even = ∑
S⊆[n]
|S| even

f̂ (S) χS.

3. [Walsh–Hadamard matrices] (3 + 4 + 3 = 10)

A Hadamard matrix is any N×N real matrix with±1 entries and orthogonal rows. Particular examples
are the Walsh–Hadamard matrices HN , inductively defined for N = 2n as follows: H1 =

[
1
]
, H2n+1 =[

H2n H2n

H2n −H2n

]
.

(a) Let’s index the rows and columns of H2n by the integers {0, 1, 2, . . . , 2n − 1} rather than [2n].
Further, let’s identify such an integer i with its binary expansion (i0, i1, . . . , in−1) ∈ Fn

2 , where
i0 is the least significant bit and in−1 the most. E.g., if n = 3, we identify the index i = 6 with
(0, 1, 1). Now show that the (γ, x) entry of H2n is (−1)〈γ,x〉.

(b) Show that if f : Fn
2 → R is represented as a column vector in R2n

(according to the indexing
scheme from item 3a) then 2−nH2n f = f̂ . Here we think of f̂ as also being a function Fn

2 → R,
identifying subsets S ⊆ {0, 1, . . . , n− 1} with their indicator vectors.

(c) Show that taking the Fourier transform is essentially an “involution”: ̂̂f = 2−n f (using the
notations from item 3b).

(d) (Optional.) Show how to compute H2n f using just n2n additions and subtractions (rather than
22n additions and subtractions as the usual matrix-vector multiplication algorithm would re-
quire). This computation is called the Fast Walsh–Hadamard Transform and is the method of choice
for computing the Fourier expansion of a generic function f : Fn

2 → R when n is large.
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4. [A + A + A (Sanders ’06.)] (4 + 8 = 12)

Let A ⊆ Fn
2 , let α = |A|/2n, and write 1A : Fn

2 → {0, 1} for the indicator function of A.

(a) Show that ∑S 6=∅ 1̂A(S)2 = α(1− α).

(b) Define A + A + A = {x + y + z : x, y, z ∈ A}, where the addition is in Fn
2 . Show that either

A + A + A = Fn
2 or else there exists S∗ 6= ∅ such that |1̂A(S∗)| ≥ α

1−α · α.

[Hint:ifA+A+A6=Fn
2,showthereexistsx∈Fn

2suchthat1A∗1A∗1A(x)=0.]

5. [linearity test of 3 functions] (10)

Consider the following modification of the BLR-linearity test towards testing linearity of 3 functions
f , g, h : {0, 1}n → {1,−1} simultaneously.

BLR-3-Test f ,g,h : “ 1. Choose y, z ∈R {0, 1}n independently

2. Query f (y), g(z), and h(y + z)

3. Accept if f (y)g(z)h(y + z) = 1. ′′

Clearly, if the three functions f , g, h are the same linear function, then the above test accepts with
probability 1. Suppose one of the three functions f , g, h (say f ) and its negation (i.e., − f ) is δ-far from
linear (this means maxα | f̂α| ≤ 1− 2δ), show that

Pr
y,z
[BLR-3-Test f ,g,h rejects ] ≥ δ.

[Hint:TheCauchy-Schwarzinequality(∑aibi)
2
≤(∑a2

i)·(∑a2
i)maycomeuseful.]

6. [recycling queries in linearity test] (3 + 6 + 3 + 3 = 15)

In lecture, we analyzed the soundness of the BLR-Test to show that if f is (1/2− ε)-far from linear,
then the test accepts with probability at most 1/2 + ε. If we repeat this test k times, we obtain a
linearity test which makes 3k queries and has the following property: if f is (1/2− ε)-far from linear,
then the test accepts with probability at most (1/2 + ε)k = 1/2k + δ. Thus every additional 3 queries
improves the soundness by a factor of 1/2. In this problem, we show that this can be considerably
improved.

Assume that both f and − f are (1− ε)/2-far from linear (i.e., maxα | f̂α| ≤ ε). Consider the following
linearity test (parameterized by k).

Test
f
k : “ 1. Choose z1, z2, . . . , zk ∈R {0, 1}n

2. For each distinct pair (i, j) ∈ {1, . . . , k}

Check if f (zi) f (zj) f (zi + zj) = 1.

3. Accept if all the tests pass. ”

Observe that this test makes at most k + (k
2) queries. We will show below that the soundness of the

test is roughly 2−(
k
2), thus showing that every additional query improves the soundness by a factor of

1/2 (almost).
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Assume that both f and − f are (1− ε)/2-far from linear.

(a) Show that the acceptance probability of the above test is given by

Pr[acc] = Ez1,...,zk

[
∏
i,j

(
1 + f (zi) f (zj) f (zi + zj)

2

)]

=
1

2(
k
2)
· ∑

S⊆([k]2 )

Ez1,...,zk

 ∏
(i,j)∈S

f (zi) f (zj) f (zi + zj)


(b) Consider any term in the above summation corresponding to a non-empty S

(i.e., Ez1,...,zk

[
∏(i,j)∈S f (zi) f (zj) f (zi + zj)

]
). Suppose (1, 2) ∈ S. Show that

Ez1,...,zk

 ∏
(i,j)∈S

f (zi) f (zj) f (zi + zj)

 ≤ Ez1,z2 [ f (z1 + z2)g(z1)h(z2)]

for some functions g, h : {1,−1}n → {±1}.

[Hint:Fixallthevariablesotherthanz1andz2suchthatthattheexpectationismaximized.]

(c) Use the result of item 5 to conclude that the expression in the above (for non-empty sums) is at
most ε (i.e., Ez1,...,zk

[
∏(i,j)∈S f (zi) f (zj) f (zi + zj)

]
≤ ε for non-empty S).

(d) Conclude that Pr[acc] is at most 2−(
k
2) + ε.

7. [derandomized linearity testing] (3 + 2 + 4 + 4 + 2 = 15)

A subset S ⊆ {0, 1}n is said to be an ε-biased set if for all α ∈ {0, 1}n \ {0n}, we have |Prx∈S[〈x, α〉 =
1]− Prx∈S[〈x, α〉 = 0]| ≤ ε.

Consider the following modification of the BLR test to check if f : {0, 1}n → {±1} is linear:

S-derandomized BLR-Test f : “ 1. Choose y ∈R {1,−1}n and z ∈R S independently

2. Query f (y), f (z), and f (y + z)

3. Accept if f (y) f (z) f (y + z) = 1. ′′

Observe that the number of random coins required for this test is only n + log2 |S|. There exist ex-
plicit constructions of ε-biased sets S of size at most O(n2/ε2). Thus, the randomness is at most
n + O(log n + log(1/ε)) as opposed to 2n for the (non derandomized) BLR test. In this problem, we
will show that this S-derandomized test performs as well as the BLR test in terms of soundness. More
precisely, we will show that Pr[acc] ≥ (1 + δ)/2, then there exists a Fourier coefficient of absolute
value at least

√
δ2 − ε, thus matching the soundness of the BLR test but for the ε loss factor.

(a) Show that if S is an ε-biased set then |Ex∈S[χα(x)]| ≤ ε forall α 6= 0n.

(b) Show that if f is a linear function (i.e, f = χβ), f passes the S-derandomized BLR-Test with
probability 1.
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For two functions f , g : {0, 1}n → R, define the inner product 〈 f , g〉S and S-norm ‖ f ‖S as
follows:

〈 f , g〉S = Ez∈S [ f (z)g(z)] ; ‖ f ‖S =
√
〈 f , f 〉S.

(c) For an arbitrary f : {0, 1}n → {±1}, show that the acceptance probability of the above test is
given by

Pr[acc] =
1
2

(
1 + ∑

α

f̂α
2 · 〈 f , χα〉S

)

=
1
2

(
1 +

〈
f , ∑

α

f̂α
2
χα

〉
S

)
.

(d) Use the fact that S is an ε-biased set and f is a {±1}-valued function to prove that∣∣∣∣∣
〈

f , ∑
α

f̂α
2
χα

〉
S

∣∣∣∣∣ ≤
√
(1− ε)∑

α

f̂α
4
+ ε.

(e) Conclude that if the S-derandomized BLR-Test accepts with probability at least (1 + δ)/2, then
there exists an α such that | f̂α| ≥

√
δ2 − ε.
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