
Analysis of Boolean Functions 6 Nov, 2017

Problem Set 3

• Due Date: 20 Nov, 2017

• Turn in your problem sets electronically (LATEX, pdf or text file) by email. If you submit handwritten solutions,
start each problem on a fresh page.

• Collaboration is encouraged, but all writeups must be done individually and must include names of all collabo-
rators.

• Refering sources other than the text book and class notes is strongly discouraged. But if you do use an external
source (eg., other text books, lecture notes, or any material available online), ACKNOWLEDGE all your sources
(including collaborators) in your writeup. This will not affect your grades. However, not acknowledging will be
treated as a serious case of academic dishonesty.

• The points for each problem are indicated on the side.

• Problems 1,2,4,5 are from O’Donnell’s book/course. Problem 6 is due to Impagliazoo, Moore and Russell while
Problem 7 is due to Håstad.

• Be clear in your writing.

1. [Average vs. Noise sensistivity]

In the proof of Peres’ theorem, we showed that the statement for any LTF f , I[ f ] ≤ O(
√

n) implies the
statement NSδ[ f ] ≤ O(

√
δ) for all LTF f . First show that this proof can be easily generalized to degree

k PTFs as follows: if there exists a constant ck such that for all degree k PTFs f , we have I[ f ] ≤ ck
√

n,
then there exists a constant dk such that for all degree k PTFs f , we have NSδ( f ) ≤ dk

√
δ.

Show the converse implication. I.e., If there exists a constant d′k such that for all degree k PTFs f , we
have NSδ( f ) ≤ d′k

√
δ, then there exists a constant c′k such that for all degree k PTFs f , I[ f ] ≤ c′k

√
n

[Hint:UseExercise2.43(a)inO’Donnell’sbook]

2. [Parity as PTF]

(a) Show that the parity function χ[n] cannot be written as a PTF of degree n− 1.

(b) Show that every function f on n bits which is not parity or its negation, can be written as a PTF
of degree at most n− 1

[Hint:Considerf≤n−1.]

3. [Levin’s proof of Yao’s XOR Lemma] (2+2+4+4+4+4)

For any two functions, f , g : {0, 1}n → {+1,−1}, define the correlation of f and g (w.r.t. uniform
distribution) as follows:

corr( f , g) def
= |E[ f (X) · g(X)]| .
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We say that the function f : {0, 1, }n → {+1,−1} is (ρ, S)-hard if for all circuits C of size S, corr( f , C) ≤
ρ. Define the t-wise XOR of f as follows: the function f (t) : ({0, 1}n)t → {+1,−1}, where

f (t)(X1, X2, . . . , Xt)
def
=

t

∏
i=1

b(Xi).

Given the above notation, recall the statement of Yao’s XOR Lemma.

Yao’s XOR Lemma 1 (2 function case). If f : {0, 1}n → {+1,−1} is (ρ, S)-hard then for all ε > 0, f (2) is
(ρ2 + ε, ε2S−O(1))-hard.

In this problem, we will give a different proof of the XOR lemma due to Levin (the proof discussed in
class is due to Impagliazzo).

Let C(X, Y) be a circuit; let S′ be its size. We want to show that if S′ is small, then it cannot predict
f (2)(X, Y) well. Now,

corr(C, f (2)) = |EX,Y [ f (X) f (Y)C(X, Y)]|

= |EX [ f (X)EY [ f (Y)C(X, Y)]]|

= ρ

∣∣∣∣EX

[
f (X)

EY [ f (Y)C(X, Y)]
ρ

]∣∣∣∣
= ρ |EX [ f (X)g̃(X)]|

where

g̃(x) def
=

EY [ f (Y)C(x, Y)]
ρ

The main step in Levin’s proof is to show that given such a function g̃ defined as above, there exists a
randomized circuit D̃ with the following properties. For all δ, there exists a random variable R and a
randomized circuit D̃ (whose inputs are x and r) such that

(I) For all x, |ER[D̃(x; R)]− g̃(x)| ≤ δ

ρ
;

(II) The size of D̃ is at most 1
δ2 S′ + O( 1

δ ).

(a) Complete the proof of Yao’s XOR Lemma 1 assuming the existence of such a randomized circuit
D̃.

In the remaining parts, we will construct such a circuit D̃. The obstacles towards constructing
such a circuit are as follows: (i) g̃ is an average of 2n many terms and (ii) each of these terms
involves computing f (Y) which we assumed was a hard function to begin with! We will get
around the first obstacle by generating a small sample of values Y and compute the expectation
of f (Y)C(x, Y) over this sample instead of the whole set of values. The error will go down
exponentially with the size of the sample, so we can approximate g̃(X) quite efficiently. But, the
second obstacle seems even harder. Even if it is possible to generate values for Y at random,
we don’t know how to compute f efficiently. To circumvent this problem, instead of generating
values of Y and computing f (Y) ourselves, we will generate a sample of pairs 〈Y, f (Y)〉—that
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is, the computation of f now becomes the headache of the distribution of R. The claim that D̃ is
a randomized circuit should be taken with a pinch of salt—the random bits it uses, admittedly,
come from quite a complicated distribution. Our argument above, however, does not suffer on
account of this: we nowhere assumed that the distribution of R was easy to compute.)

Fix the sample size s = 1/δ2, and let R̃ be random variable taking values in ({0, 1}n × {1,−1})s

such that

Pr[R̃ = 〈〈y1, e1〉, 〈y2, e2〉, . . . , 〈ys, es〉〉] =
{

∏s
i=1 Pr[Y = yi] if ∧t

i=1 f (yi) = ei

0 otherwise
.

Now, the circuit D̃ implements the following algorithm. Let the input be x.

i. Pick R̃ = 〈〈y1, e1〉, 〈y2, e2〉, . . . , 〈ys, es〉〉.
ii. Compute v = 〈e1C(x, y1), e2C(x, y2), . . . , esC(x, ys)〉. Thus, v corresponds to values for f (Y)C(x, Y)

for a sample of s randomly chosen values for Y. We expect the number of 1’s in this list to be
between k1 = 1−ρ

2 s and k2 = 1+ρ
2 s. Let the actual number of 1’s in v be i.

iii. If i ≤ k1 then output −1. If i ≥ k2, then output 1. Otherwise, let i = 1+q
2 s (−ρ < q < ρ);

output 1 with probability 1
2 (1 +

q
ρ ) and −1 with probability 1

2 (1−
q
ρ ).

Observe that the random bits R used by D̃ are R̃ used for generating v and the random bits used
for deciding the output when the number of 1’s in v is between k1 and k2.

(b) Verify that the size of circuit D̃ is at most 1
δ2 S′ + O( 1

δ ) as promised in (II).

We will now show that ∣∣ER[D̃(x)]− g̃(x)
∣∣ ≤ 1

ρ

√
1− ρ2

2πs
. (1)

Setting s = 1/δ2 yields (I) completing the proof of the lemma.

(c) Show that

E[D̃(x) | number of 1’s in = i] =


+1 i ≥ 1+p

2 s
−1 i ≤ 1−p

2 s
2i−s

sp otherwise
.

Now if we define αx
def
= PrY[b(Y)C(x, Y) = 1], show that the above implies the following.

ER[D̃(x)] = −1 ·
k1

∑
i=0

(
s
i

)
αi

x(1− αx)
s−i + ∑

k1<i<k2

(
s
i

)
αi

x(1− αx)
s−i 2i− s

sρ
+ 1 ·

s

∑
i=k2

(
s
i

)
αi

x(1− αx)
s−i

(d) Show that g̃(x) can be written in terms of αx as follows:

g̃(x) =
EY[ f (Y)C(x, Y)]

ρ
=

2αx − 1
ρ

.

We will now derive for g̃(x) and expression similar to that of ER[D̃(x)]. Observe that

s

∑
i=0

(
s
i

)
αi

x(1− αx)
s−i 2i− s

sρ
= EI

[
2I − s

sρ

]
=

2αxs− s
sρ

=
2αx − 1

ρ
= g̃(x),
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Hence conclude that

ER[D̃(x)]− g̃(x) =
k1

∑
i=0

(
s
i

)
αi

x(1− αx)
s−i
(
−1− 2i− s

ρs

)
+

s

∑
i=k2

(
s
i

)
αi

x(1− αx)
s−i
(

1− 2i− s
ρs

)
.

We will now bound this error. In fact, the first and last sums are symmetrical; the first is always
positive; the last is always negative. So, it will suffice if we bound the absolute value of one of
them. Let us concentrate on the last sum. We write it as

− 2
ρs

s

∑
i=k2

(
s
i

)
αi

x(1− αx)
s−i(i− k2). (2)

(e) Show that the above expression is maximized (in absolute value) when αx = k2/s. Furthermore,
show that when α = k2/s, the above expression has the closed form

s
(

s− 1
k2 − 1

)
αk2

x (1− αx)
s−k2+1.

[Hint:Toobtaintheaboveclosedform,considerthefollowingcombinatorialproblem.Let

f(p)=
s

∑
i=k

(s
i

)pi(1−p)s−i.

Thatis,f(p)istheprobabilitythatinsindependenttrialsofa0-1randomvariablethattakes
thevalue1withprobabilityp,weseeatleastkones.Then,

df
dp

=
s

∑
i=k

(s
i

)pi(1−p)s−i−1(i−ps).

Ontheotherhand,thederivativeoff(p)canbecalculateddirectly.Considersindependent
0−1variableswheretheithvariabletakesthevalue1withprobabilitypi.Letg(p1,...,ps)

betheprobabilitythatthesumofthesevariablesisatleastk.Notethatf(p)=g(p,p,...,p);
thus,

df
dp

=
s

∑
i=1

∂g
∂pi

∣∣∣∣
∀j:pj=p

.

]

(f) Use the above closed form expression and the following Stirling’s formula due to Robbins:(n
e

)n√
2πn× e1/(12n+1) < n! <

(n
e

)n√
2πn× e1/12n.

to conclude (1).

This proof is due to Levin, the bound in (1) is due to Boppana and Hirschfeld and the above
writeup is due to Radhakrishnan.
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4. [Bonami’s Lemma implies (2,4)-hypercontractivity] Exercise 9.6 in O’Donnell’s book

5. [small ball probabilities around all points] Exercise 9.12 in O’Donnell’s book

6. [Information theoretic proof of Level-1 inequality]

In lecture, we proved the following level-1 inequality (also called Chang’s inequality). For any subset
A ⊂ {±1}n, |A| = α · 2n and f = 1A, we have

n

∑
i=1

f̂ (i)2 = O
(

α2 ln
1
α

)
.

In this problem, we will give an alternate proof via information theory.

Let X = (X1, . . . , Xn) ∈ {±1}n be the n-bit random variable obtained by picking uniformly at random
an element X in the set A. Clearly, we have that the entropy of X, given by H(X) = lg(α · 2n) =

n− log2
1
α .

(a) Let pi = Pr[Xi = +1]. Show that

pi =
1
2
(1 + Ex∈Axi) =

1
2

(
1 +

f̂ (i)
α

)
.

(b) Show that H(Xi) = h2(pi) where h2(p) is the binary entropy given

h2(p) = p log2
1
p
+ (1− p) log2

1
1− p

= (log2 e) ·
(

p ln
1
p
+ (1− p) ln

1
1− p

)
.

Use the Taylor series around p = 1/2 to conclude that h( 1+x
2 ) ≤ 1− (log2 e) · x2

2 .

Hence, H(Xi) ≤ 1− (log2 e) f̂ (i)2

α2 .

(c) Use subadditivity of entropy H(X) ≤ ∑ H(Xi) to conclue that ∑ f̂ (i)2 ≤ 2α2 ln 1
α .
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