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(2− ε)-hardness of approximating Vertex Cover1

We want to show that (weighted) Vertex Cover is hard to approximate to within 2− ε for any ε > 0 assuming
the Unique games conjecture. This was first proved by Khot and Regev [KR08], building on the work of
Dinur and Safra [DS05], who showed that it is NP-hard to approximate the (weighted) Vertex Cover to
within 10

√
5− 21− ε = 1.3606− ε for any ε > 0.

1 The UG variant we use

We will use the following variant of the UG problem, introduced by Khot and Regev [KR08]. For parameters
t, r ∈ N and ν ∈ (0, 1), we define the (t, r, ν)-Label Cover (also denoted (t, r, ν)-LC) problem as follows:
an instance of this problem is a 4-tuple (X, E, L, Ψ), where (X, E) is an undirected graph (not necessarily
bipartite), L is a set of r labels, and Ψ = {ψe | e ∈ E} is a set of permutations of L (i.e. each ψe ⊆ L× L is the
graph of a permutation). The YES and NO instances of this problem are defined as follows:

• YES case: ∃X0 ⊆ X such that |X0| ≥ (1 − ν)|X| and a labeling σ : X → L s.t. for all (u, v) ∈
E ∩ (X0 × X0), the labeling σ satisfies ψ(u,v): that is, (σ(u), σ(v)) ∈ ψ(u,v).

• NO case: ∀X0 ⊆ X such that |X0| ≥ ν|X| and for all labelings σ : X0 → ( L
≤t), there exists an edge

e = (u, v) ∈ E∩ (X0 × X0) such that (σ(u)× σ(v))∩ ψe = ∅. I.e. even when we are allowed to assign
up to t labels to each of the vertices in X0, there is always an edge e with both endpoints in X0 such
that no pair of (up to t2) labels satisfies the constraint corresponding to edge e.

We use the following result of Khot and Regev [KR08] without proof:

Theorem 1. Assume the Unique Games Conjecture. Then ∀t ∈ N, ∀ν ∈ (0, 1), ∃r ∈ N such that (t, r, ν)-Label
Cover is NP-hard.

2 Reduction from the UG variant to VC

The reduction we outline will produce, given a (t, r, ν)-LC instance I, a node weighted graph G = (V , E , w)
with the total weight of all nodes being 1 and such that:

• If I is a YES instance, then there exists an Independent set in G of weight at least 1
2 − α. (And hence,

there is a vertex cover of size at most 1/2 + α.)

• If I is a NO instance, then every independent set in G has weight at most β. (And hence every vertex
cover is of size at least 1− β.)

1Prahladh: Thanks to Srikanth Srinivasan for scribing these notes. The proof given here is essentially the proof of Khot-Regev and
Dinur-Safra, with a simplification due to Harsha, Håstad and Sachdeva and a further simplification due to Srinivasan while scribing
the notes.
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Putting the above together, we obtain the result that Vertex Cover is UG-hard to approximate within 2−
O(α + β). Since α and β will be parameters we can make arbitrarily small, this will prove the hardness
result we want.

For now, we leave t, ν as parameters. They will be fixed at the end of the proof. The label size r will then be
the one guaranteed by Theorem 1.

2.1 Description of G

Let ε > 0 be a small constant parameter and let p = 1
2 − ε.

Starting from an instance I = (X, E, L, Ψ) of (t, r, ν)-LC, the corresponding instance G = (V , E , w) of Vertex
Cover is defined as follows:

• V = X× 2L,

• E = {((u, F), (v, G)) | (u, v) ∈ E and (F× G) ∩ ψ(u,v) = ∅}, and

• w(u, F) = 1
|X| p

|F|(1− p)r−|F|. In other words, the weight function defines a probability distribution
on V where to pick a random element (u, F) of V , we choose u ∈ X uniformly at random and F
according to the p-biased measure on {0, 1}L = 2L.2

Let Ind(G) denote the weight of the largest independent set in G.

2.2 Completeness

Claim 2. If I is a YES instance of (t, r, ν)-LC, then Ind(G) ≥ (1− ν) · ( 1
2 − ε).

Proof sketch. Let σ : X → L be a labeling that witnesses the fact that I is a YES instance. There is a subset
X0 ⊆ X of size at least (1− ν)|X| such that σ satisfies all the edges with both endpoints in X0. The set
{(u, F) | u ∈ X0, F 3 σ(v)} ⊆ V is an independent set in G of the required weight.

2.3 Soundness

Claim 3. There exists t = t(ν, ε) ∈N such that if I is a NO instance of (t, r, ν)-LC, then Ind(G) ≤ 2ν.

Proof. Assume for the sake of contradiction that there is an independent set I of G of weight at least 2ν.
Without loss of generality, assume that I is a maximal independent set.

We treat I as a Boolean function with domain V = X × 2L. For each v ∈ X, we have a natural restriction
Iv : {0, 1}L → {0, 1}. Let µp denote the p-biased measure over {0, 1}L.

Since Ev∈X,F∼µp [I(v, F)] ≥ 2ν, we see that with probability at least ν over the choice of v ∈ X, we have

E
F
[Iv(F)] ≥ ν.

2Throughout, we blur the distinction between {0, 1}L and 2L.
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Let X0 denote the set of v ∈ X satisfying the above condition. We have |X0| ≥ ν|X|.

Since I is an independent set in G, we see that for each (u, F), (v, G) ∈ I , we must have either (u, v) 6∈ E
or (F × G) ∩ ψ(u,v) 6= ∅. In particular, this easily implies that for any F′ ⊇ F and G′ ⊇ G, the vertices
(u, F′) and (v, G′) continue to be non-adjacent. Since I is a maximal independent set, we therefore see that
Iu(F′) = Iv(G′) = 1. That is, the functions Iu for u ∈ X are monotone.

A digression into Extremal Combinatorics. Given a function f : {0, 1}L → {0, 1} and i ∈ L, we define
the influence of the ith variable w.r.t. the measure µp as follows:

Infp
i ( f ) := E

x−i∼µ
⊗(n−1)
P

[
Var

xi∼µp
[ f (x1, . . . , xi−1, xi, xi+1, . . . , xn)]

]
= p(1− p) · Pr

x∼µ⊗n
p

[ f (x) 6= f (x⊕ ei)]

The total influence of f w.r.t. µp is defined to be

Ip( f ) = ∑
i∈L

Infp
i ( f )

For C ⊆ L, we say that f is a C-junta if it only depends on the inputs indexed by C. Further, we say that f
is δ-approximated by a C-junta if there is a C-junta g such that

Pr
x∼µp

[ f (x) 6= g(x)] ≤ δ.

The following is a slight specialization of an important theorem of Friedgut, which allows us to say that
functions of low total influences are well approximated by juntas.

Theorem 4 (Friedgut’s theorem). Fix any p ∈ (1/4, 1/2), δ ∈ (0, 1) and k ∈ N. Let f : {0, 1}L → {0, 1} be a
function such that Ip( f ) ≤ k. Then, f is δ-approximated by a C-junta where |C| ≤ exp(Op(k/δ)).

However, the above theorem is not applicable unless f has low total influence. Our functions Iv do not
necessarily have that property. However, it turns out that we can turn the functions into those of low total
influence by tweaking the bias. Here, we use crucially the monotonicity of these functions. Details follow.

We use the following lemma about monotone functions.

Lemma 5 (Russo’s lemma (Margulis, Russo)). If f is a monotone Boolean function, then dµp( f )
dp = Ip( f )/p(1−

p) where µp( f ) denotes the expectation of f w.r.t. µp.

Note that if f is a monotone Boolean function then µp( f ) is a quantity that is bounded between 0 and 1 and
increases monotonically with p. In particular, the derivative of this quantity w.r.t. p cannot be uniformly
large. Specifically, in any interval of length ε′ > 0, there must be a point where it is at most 1/ε′. Putting
this observation together with Friedgut’s theorem, we obtain the following monotone version of Friedgut’s
theorem due to Dinur and Safra.

Theorem 6 (Friedgut’s theorem for monotone functions (Dinur-Safra)). Let p = 1
2 − ε for ε ∈ (0, 1/4). Fix

any δ ∈ (0, 1) and k ∈ N. Let f : {0, 1}L → {0, 1} be a monotone function. Then, there is a q ∈ (p, p + ε/2) and
an exp(O(1/δε))-junta f ′ such that

Pr
x∼µq

[ f (x) 6= f ′(x)] ≤ δ.
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We now return to the proof of Claim 3.

Using the above theorem for δ := ν2/16, for each v ∈ X0, we can choose a qv ∈ (p, p + ε/2), Cv ⊆ L with
|Cv| ≤ h(δ, ε) = exp(O(1/δε)), and a Cv-junta fv such that fv δ-approximates Iv w.r.t. the measure µqv .
Also note that 1

2 − ε ≤ qv ≤ p + ε/2 = 1
2 −

ε
2 .

We define t = h(δ, ε). Let σ : X0 → ( L
≤t) be defined by σ(v) = Cv. We would like to show that for all edges

e = (u, v) ∈ E ∩ (X0 × X0), we have (σ(u)× σ(v)) ∩ ψ(u,v) 6= ∅.

Fix any edge (v1, v2) ∈ E ∩ (X0 × X0). For brevity, we use I1, I2, f1, f2, etc. instead of Iv1 , Iv2 , fv1 , fv2 , etc..
Without loss of generality, assume that ψ(v1,v2)

is the identity permutation. Then we need to show that
C1 ∩ C2 6= ∅.

We argue by contradiction. Assume that C1 ∩ C2 = ∅. We then show that I is not an independent set by
finding (v1, F1), (v2, F2) ∈ I such that ((v1, F1), (v2, F2)) ∈ E . Consider the following probabilistic process
of picking F1, F2. For each i ∈ L, we place it in F1 with probability q1, in F2 with probability q2 and in neither
with probability 1− (q1 + q2) (which is positive since q1, q2 < 1/2). Note that by definition F1 ∩ F2 = ∅ and
hence we have ((v1, F1), (v2, F2)) ∈ E with probability 1. We only need to argue that with positive proba-
bility these elements belong to I : equivalently, we need to show that with positive probability, Ij(Fj) = 1
for each j ∈ {1, 2}.

Consider first the probability that f j(Fj) is 1. Note that by the monotonicity of Ij and the fact that qj ≥ p,
we have µqj(Ij) ≥ µp(Ij) ≥ ν. As f j is a δ-approximation to Ij w.r.t. µqj , we see that µqj( f j) ≥ ν− δ ≥ ν/2.
As Fj is distributed according to µqj , we see that PrFj [ f j(Fj) = 1] ≥ ν/2.

Now, since C1 ∩C2 = ∅ by assumption, we see that the events f j(Fj) depend on disjoint sets of co-ordinates
in L and hence, the events are mutually independent. Thus, we have

Pr
(F1,F2)

[ f1(F1) = 1∧ f2(F2) = 1] ≥ ν2/4.

Finally, we have

Pr
(F1,F2)

[I1(F1) = 1∧ I2(F2) = 1] ≥ Pr
(F1,F2)

[ f1(F1) = 1∧ f2(F2) = 1]

− Pr
F1
[ f1(F1) = 1∧ I1(F1) 6= 1]− Pr

F2
[ f2(F2) = 1∧ I2(F2) 6= 1]

≥ ν2/4− 2δ ≥ ν2/8 > 0

where the second inequality follows from the fact that f j is a δ-approximation to Ij w.r.t. µqj .
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