
• Version hash: (None) • ((None)) •

Toolkit for TCS Feb-June 2021
HW : MWUM and Spectral Methods

Out: May 6, 2021 Due: May 24, 2021

(1) Please take time to write clear and concise solutions. You are strongly encouraged to submit LATEXed solutions.

(2) Collaboration is OK, but please write your answers yourself, and include in your answers the names of everyone

you collaborated with and all references other than class notes you consulted.

1. [From Satish Rao’s homework assignments] (6 points)
In the experts framework, we compared an online algorithm that was allowed to pick among = (expert)
strategies, with the best choice of a single expert in hindsight. In this question we �rst introduce a di�erent
measure of performance of the online algorithm, called regret. The regret is how much worse the online
player does than the best o�ine player. i.e. if the best expert su�ers a loss of ! while the expected loss of
the online player is E [!(�)], then the regret is E [!(�)] − !.
Assume that the game lasts for) rounds, and the loss in each round is in the interval [0, 1].

(a) (3 points) Show that the regret su�ered by the experts algorithm (with appropriate parameters) com-
pared to the best expert is $

(√
) · log=

)
.

(b) (3 points) How important was it that the online player was allowed to switch between experts, while
the o�ine player had to stick to a single expert? To answer let us consider the regret su�ered by the
online player compared to an o�ine player who is allowed to switch between experts at every step.
Construct an example where !∗, the loss su�ered by the o�ine player is 0, while the expected regret
of A is at least) · (1 − 1/=).

2. [Lower bound of 2 for any deterministic algorithm] (3 points)
In lecture, we showed that the weighted-majority (,"[) algorithm satis�es the following bound. For any
positive integer) , let< ())

8
be the number of mistakes made by expert 8 upto step) and" ()) be the number

of mistakes made by,"[algorithm with parameter [∈ (0, 1/2]. Then, for any expery 8 ∈ [=], we have

" ()) ≤ 2(1 + [) ·< ())
8
+ 2 ln=

[
.

In other words, the ,"[algorithm makes no more than approximately twice the number of mistakes
made by any expert. Show that no deterministic algorithm can guarantee a perfomance better than twice
the number of mistakes made by the best expert.

3. [Y-Nets & Hitting Sets (modi�ed from Anupam Gupta and Ryan O’Donnell’s psets)] (7 points)
Let (* , F) be a set system, where the universe* is of size # (i.e, |* | = =), and F is a collection of< sets
{(1, (2, . . . , (<} where each (8 ⊆ * . De�ne the following two quantities:

Hitting Set: The set � ⊆ * is a hitting set for F if � ∩ (8 ≠ ∅ for all 8 ∈ [<]. Let 2 be the size of the
smallest hitting set for F ; note that this is NP-hard to compute.

Y-net: Given non-negative weights F4 for each element 4 ∈ * , de�ne the weight of a set � as F (�) =∑
4∈�F4 . A set # ⊆ * is an Y-net for (F ,F) if for all sets (8 such that F ((8) ≥ Y · F (*), we have

∩ (8 ≠ ∅. (In other words, # hits all the “heavy-weight” sets.)

(a) (2 points) For any parameter Y > 0, give a polynomial-time algorithm that given any set system
(* , F) with< sets and a weight functionF : * → R≥0 �nds an Y-net of size at most $ ((log<)/Y).

Hint: Check if a a greedy algorithm (or even a randomized algorithm) works.

(b) (4 points) In this part, we will use the above algorithm for Y-nets to construct a hitting set that is not
too large compared the size of the optimal hitting set.
Suppose you are given an algorithm �Y that when given a set family (* , F) and an associated weight
function F , �nds an Y-net of size) (Y,<). (This could be, for instance the algorithm designed in
part 3a).

• Version hash: (None) • ((None)) •

Consider the following algorithm that uses �Y to compute a hitting set for F :
Data: (* , F) - a set system
Result: A hitting set �

1 SetF (4) ← 1 for all 4 ∈ * ;
2 repeat
3 Use algorithm �Y to �nd an Y-net � for (F ,F);
4 Let (be any set in F such that (∩ � = ∅. If no such set exists, set (← ∅;
5 for all elements 4 ∈ (do
6 F (4) ← 2 ·F (4) (i.e., double its weight);
7 end
8 until � is a hitting set for F ;
9 Ouput � ;

Algorithm 1: Hitting Set Algorithm From Y-nets
Let 2 be the size of an optimal hitting set (∗ of (* , F) (note that it is NP-hard to determine this
quantity). Show that if Y < 21/2 − 1, then the above algorithm terminates within

log2
(
=
2

)
1
2
− log2 (1 + Y)

iterations of the return loop at which point it outputs a hitting set of size at most) (Y,<).
One such choice of Y is 1/22, which gives a bound of $ (2 · log(=/2)) on the number of iterations.

Hint: Compare the weight F (*) of the universe* and the weight F ((∗) of the optimal hitting set (∗ at the end
of each iteration of the return loop.

(c) (1 point) The above algorithm requires knowledge of the optimal hitting set size 2 . Use a doubling ar-
gument or otherwise, to give an$ (log<)-approximation algorithm of the size of the optimal hitting
set size

4. [bipartite] (3 points)
Let � be the adjacency matrix of an =-vertex undirected connected graph� and `1 ≥ `2 ≥ · · · ≥ `= be the
= eigenvalues of � arranged in non-increasing order. In lecture, we had shown that `1 > −`= .

(a) (2 points) Prove that if `1 = −`= , then the graph is bipartite.
(b) (1 point) Prove that if the graph is bipartite, then `1 = −`= .

5. [Colouring using largest eigenvector] (3 points)
Let � be the adjacency matrix of an undirected graph � , and let E be its top eigenvector with eigenvalue
^. Note that ^ ≥ 0 and E can be so chosen as to have non-negative entries. Let us assume further that we
write E so that its entries are arranged in descending order (so that E1 ≤ E2 ≤ · · · ≤ E=). Note that this
induces an ordering on the vertices of � .
Consider now the following colouring procedure, which is based on the above order. We start with an
empty list ! of colours. We then process the vertices D1, D2, . . . , D= in order, and for any given 8 , construct
the set (of the colours assigned to neighbors D 9 of D8 with 9 < 8 . If (= !, then we create a new color 2 ,
set ! = ! ∪ {2} and assign the colour 2 to D8 . Otherwise, if ! \ (is non-empty, we choose a color from
! \ ((according to some pre-de�ned choice rule) and assign it to D8 . Note that this procedure produces a
proper coloring of the graph.
How large can ! can be at the end of the algorithm? Show that your bound is tight by giving an appropriate
example.

6. [Hall’s drawing of graphs] (3 points)
Let !� = ��−�� be the Laplacian of an undirected graph� = (+ , �) with eigenvalues 0 = _1 ≤ _2 ≤ · · · ≤
_= and corresponding eigenvectots Ψ1 = 1/

√
=,Ψ2, . . . ,Ψ= . For any positive integer : < =, Let G1, . . . , G:

be orthonormal vectors that are all orthogonal to 1. Then prove that
:∑
8=1
〈G8 , !�G8〉 ≥

:+1∑
8=2

_8 ,

and this inequality is tight only when 〈G,Ψ9 〉 = 0 for all 9 such that _ 9 > _:+1.

