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1 Linear algebra

Linear algebra deals with “vectors”, “vector spaces”, “matrices”, “eigenvalues”, “determinants”
etc. In this primer we give you a brief overview of some basic concepts in linear algebra.

1.1 Definition and examples

What are vector spaces (informally)?

A collection of “vectors” that can be added, subtracted, and scaled.

Most of the times, we tend to think of “vectors” as a tuple of coordinates (for example: (1, 2,−1) ∈
R3, or a + ιb ∈ C but thought as the tuple (a, b) ∈ R2). But the only things that a vector space
needs to have is the notion of “addition”, “subtraction” and “scaling”.
Definition 1.1 (Vector spaces). A vector space V over a field F (such as the real numbers R or complex
numbers C) is a set of elements, and three binary operations corresponding to “addition”, “subtraction” and
“scaling” with the following properties:

The zero vector: The set of vectors contains a special zero vector (often denoted by just 0).

Addition and subtraction1: There is an associative binary operations + : V × V → V that is

• commutative (i.e., u + v = v + u; order of addition does not matter),
• associative (i.e., (u + v) + w = u + (v + w); order of bracketing does not matter), and
• satisfies u + 0 = 0 + u = u (adding the zero vector does nothing).
• every vector u ∈ V has a unique vector−u ∈ V that is its negative in the sense that u+(−u) =

0. Using this, subtraction of two vectors u and v is just defined as u + (−v) (we will use u − v
as shorthand for u + (−v)).

Scaling: There is a binary operation · : F × V → V that “scales” a vector by a field constant, such that

• 1 · v = v (i.e., scaling a vector by 1 does nothing),

• α · (β · v) = (αβ) · v (i.e., successive scalings compose naturally), and

• α · (u + v) = (α · u) + (α · v) (i.e., scaling distributes over addition, or the scale of a sum of
vectors is the sum of the scaled vectors). ♢
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The most standard examples are vector spaces such as R3 = {(x, y, z) : x, y, z ∈ R}, or the set
of complex number C = {a + ιb : a, b ∈ R} (as a vector space over R), or polynomials of degree
at most 3 ({ f0 + f1x + f2x2 + f3x3 : f1, f2, f3, f4 ∈ R

}), etc.
All of these are examples where there inherently appear to be “coordinates”. However, this

need not always be the case. There are some non-standard examples to keep in mind

A non-standard example: Functions from R to R

If V is the set of all possible functions from R to R (i.e., V = { f : R → R}) then we can
certainly add/subtract/scale functions — for example, f + g is the function that maps any x
to f (x) + g(x), and 3 · f is the function that maps x to 3 · f (x):

f + g : x 7→ f (x) + g(x)

3 · f : x 7→ 3 · f (x).

Although there does not appear to be any “coordinates” here, the above is still an example
of a legitimate vector space.

In most situations that we will deal with, the vector spaces have finite dimension, and coordin-
ates then become more meaningful.

1.2 Linear combination, linear span, linear dependence, basis and dimension

We say that a vector w is a linear combination of a sequence of vectors (v1, v2, . . . , vk) if there are
scalars α1, α2, . . . , αk such that

w = α1v1 + α2v2 + · · ·+ αkvk.

Wesay that a sequence of vectors (v1, v2, . . . , vk) is linearly dependent if there are scalars α1, α2, . . . , αk,
at least one of them non-zero, such that

α1v1 + α2v2 + · · ·+ αkvk = 0.

If the sequence is not linearly dependent, then we call it linearly independent. A set S (instead of
a sequence) of vectors is linearly independent if every finite sequence of distinct vectors from S is
linearly independent.

2



Examples

The sequence ([0, 1,−1]T, [−1, 0,−1]T, [1, 1, 0]T
) of vectors from R3 is linearly dependent as

1 · [0, 1,−1]T + (−1) · [−1, 0,−1]T + (−1) · [1, 1, 0]T = [0, 0, 0]T.

On the other hand, the sequence (
[0, 1,−1]T, [−1, 0,−1]T

) is linearly independent, because
if

α ·

 0
1
−1

+ β ·

−1
0
−1

 =

0
0
0

 ,

then both α and β must be zero.

Example

Suppose S =
{
[0, 1,−1]T, [−1, 0,−1]T, [1, 1, 0]T

}, then
span(S) =


β − α

β

−α

 : α, β ∈ R

 .

Consider the following collection of vectors all from R4:

{(1,−1, 0, 3), (1, 1, 1, 1), (2, 0, 1, 4), (0,−2,−1, 2), (3, 1, 2, 5), (4, 2, 3, 6), (4, 0, 2, 8)} .

Let us say that each Vigyan Vidushi participant is asked to choose a maximal linearly in-
dependent set. That is, each participant chooses some set S of vectors that happens to be
linearly independent, and it is maximal in the sense that they cannot extend the set S by an-
other vector from the above collection and still keep it linearly independent. In general, a set
S being maximal according to some property does not mean that this is the largest possible
among all sets; it only means that there are no ways of extending S by additional elements
and still maintaining the property.
Hence, it should be surprising to learn that eachVigyanVidushi participantwill have picked
a set of size two. That is, all maximal linearly independent subsets all have the same size!
This is a non-trivial fact about linear independence.

Let S be a set of vectors from some vector space V. Some other vector can be obtained as a
linear of combination of (finite sequences of) vectors from S. The collection of all vectors that can
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be obtained as a linear combination of vectors in S will be called span(S), that is,

span(S) = {α1v1 + α2v2 + · · ·+ αkvk} ,

Note that span(S) may not include all vectors in V, but it will be vector space under the same
operations of vector addition and scalar multiplication. We call a set S a spanning set if span(S) =
V. If a vector space V has a finite spanning set, then we say that V is finite-dimensional. We will
deal exclusively with finite-dimensional vector spaces.

Linearly independent sets and spanning sets are of opposing flavours. A subset of a linearly
independent set is, of course, linearly independent. Similarly, a superset of a spanning set is a
spanning set. We will soon see that every vector space has a set that is both linearly independent
and spanning.

Theorem 1.2. • Every maximal linearly independent set is a spanning set. (Not hard.)

• Every minimal spanning set is a linearly independent set. (Not hard.)

• If L is a linearly independent set and S is a spanning set, then |L| ≤ |S|. (Deep fact about vector
spaces.)

The above observations immediately imply that in a finite-dimensional vector space, all linearly
independent sets are finite. Furthermore, a maximal independent set (it exists, why) is spanning.
A sequence of vectors that is both linearly independent and spanning (e.g., the elements of a max-
imal linearly independent set ordered in some way) is called a basis of the vector space. Do you
now see why the third observation implies that all such bases must have the same cardinality2?
This cardinality is the dimension of the vector space. Furthermore, note that every every minimal
spanning set is also a basis.

Exercise (optional)

Every subspace of a finite-dimensional vector space is finite-dimensional.

Bases allow us to assign coordinates to vectors. Let us fix a basis B = (v1, v2, . . . , vk) for a vector
space V.

(a) Because B is spanning, every vector w in V can be written as a linear combination of vectors
in B, say,

w = α1v1 + α2v2 + · · · αkvk,

2Using cardinality now because we might need size for bit-lengths later.
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which we will sometimes write as

w =
[
v1, v2, . . . , vk

]


α1

α2
...

αk


Here we think of

[
v1, v2, . . . , vk

]
as a row whose entries are abstract vectors. In this way we

think of the column vector [α1, α2, . . . , αk]
T as a representation of w with respect to the basis

B.

(b) Next, because B is a basis, this representation is unique. For suppose [α′
1, α′

2, . . . , α′
k]

T is an-
other representation. Then, we have w = B[α1, α2, . . . , αk]

T and w = B[α′
1, α′

2, . . . , α′
k]

T. Then,
0 = B[. . . , . . . , . . .]. Complete this proof as an exercise.

A very convenient basis for vector spaces such as R3 is what is called the standard basis consisting
of vectors e1 = [1, 0, 0]T, e2 = [0, 1, 0]T and e3 = [0, 0, 1]T. In fact, do have this basis in mind all the
time, because the representation of the vector w = [2, 3, 5]T in the basis (e1, e2, e3) is [2, 3, 5]T, that
is w itself, because w = 2e1 + 3e2 + 5e3.

1.3 Linear transformations, and matrices

Linear transformations

Suppose V and W are two vector spaces over the same field F. A linear transformation is a
map φ : V → W “that behaves linearly”. That is, it must satisfy properties such as

φ(α · u + β · v) = α · φ(u) + β · φ(v) for any α, β ∈ F , u, ∈ V.

Notice that the scaling operation and the addition operation on the LHS are in the vector
space V, and on the RHS are in the vector space W. Hence, the map φ and structure of V, W
“workswell together” in the sense that it doesn’t matter if you apply the operations and then
apply φ, or if you apply φ and then apply the operations.

Supposewe have two vector space V andW over the same field, howdowe specify such a linear
transformation? Suppose you had a basis {v1, . . . , vr} for V, then knowing φ(vi) for i = 1, . . . , r is
sufficient to figure out φ(v) for any other v ∈ V (because we know any v ∈ V can be expressed as
a linear combination in terms of the basis, and the above property of linear transformations will
let us work out φ(v) should be). If we also have a basis {w1, . . . , ws} for the space W, then we can
express φ(vi) in terms of this basis. Hence, suppose

φ(vi) = a1iw1 + · · ·+ asiws, for all i = 1, . . . , r,
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we can express this “data” as an s × r matrix

M =


a11 · · · a1r
... . . . ...

as1 · · · asr


where the i-th column is just φ(vi) expressed as the linear combination of {w1, . . . , ws}. Therefore,
if v = c1v1 + · · ·+ crvr, then φ(v) when expressed in terms of {w1, . . . , ws} is simply the matrix
vector product

a11 · · · a1r
... . . . ...

as1 · · · asr




c1
...

cr

 .

For any linear transformation φ : V → W, once we fix a basis for V and a basis for W, we
can represent the linear transformation using an dim(W)× dim(V)matrix Mφ = (mij : i =
1, 2 . . . , dim(W), j = 1, 2, . . . , dim(V)). Indeed, we can fix these bases so that matrix has
very special diagonal form: the only non-zero entries appear along the principal diagonal
of the matrix, that is, mij = 0 whenever i ̸= j. If coordinates are assigned to vectors us-
ing bases wrt which the matrix has this diagonal form, then computation becomes straight
forward; to apply the transformation, we need to scale the coordinates appropriately, drop
some coordinates, or pad some with zeros.
When the domain and co-domain of the linear transformation are the same (such linear
transformations are called linear operators), then it natural to use the same basis for repre-
senting vectors in the domain and co-domain. Note that in this case, the transformation is
represented by a square matrix. Motivated by the remarks above, we can ask if one can, by
choosing an appropriate basis, represent such linear operators by diagonal matrices.

1.4 Diagonalization, eigenvalues and eigenvectors

Suppose φ : V → V is a linear transformation. Let B = (v1, v2, . . . , vn) be a basis for which φ is
represented as a diagonal matrix with scalars (λ1, λ2, . . . , λn) along the diagonal. Then,

φ(vi) = λivi, for i = 1, 2, . . . , n.

That is, the action of φ on the i-th basis vector amounts to scaling it by a factor λi. In general, we
say that a vector v ̸= 0 is an eigenvector of the linear operator φ, if

φ(v) = λv.
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The scalar (for it scales!) λ is the eigenvalue associated with the eigenvector v. Clearly, repeatedly
applying φ to the eigenvector v repeatedly scales v:

φ(r)(v) = λrv.

Note that this equality holds for r = 0, if we regard φ(0) as the identity linear operator. (What if φ is
invertible and r is negative?) In general, suppose p(X) is a polynomial: prXr + pr−1Xr−1 + · · ·+ p0,
the we may substitute φ for X, and regard p(φ) as the linear operator

pr φ(r) + pr−1φ(r−1) + · · ·+ p0φ(0).

Suppose v is an eigenvector of φ with eigenvalue λ. What is p(φ)v?
Exercise: Suppose v1, v2, . . . , vk are eigenvectors with distinct eigenvalues λ1, λ2, . . . , λk. Show

that (v1, v2, . . . , vk) is linearly independent. Hint: construct a polynomial pi(X) such that pi(λi) =

1 and pi(λj) = 0 for j ̸= i. Conclude that φ can have at most dim(V) distinct eigenvalues.
Exercise: Give an example of a linear operator φ on R2 that has (i) two linearly independent

eigenvectors, (ii) no eigenvector, (iii) has an eigenvector but does not have two linearly indepen-
dent eigenvectors.

The linear operator φ : V → V has a representation as diagonal matrix iff V has a basis consist-
ing of eigenvectors of φ.

1.5 Determinants and volume

Consider a linear operator φ : Rd → Rd. Under this operator shapes get deformed. In general,
a cube becomes a parallelepiped, a ball becomes an ellipsoid, etc. However, it is a remarkable
property of linear operators that the ratio of the volumes of the original shape and its image under
φ is a fixed constant independent of the shape. This quantity can be computed using thematrix Mφ

of φ (with respect to some basis). Given such an n× n matrix M = (mij), we define its determinant
to be

det(M) = ∑
σ∈Sn

n

∏
i=1

sign(σ) · miσ(i),

where σ ranges over the set Sn of all permutations of {1, 2, . . . , n}. Remarkably, det(Mφ) does not
depend on the basis with respect to which it is written; so wemay refer this quantity as det(φ). The
determinant, which is a polynomial function of the entries of M is a very important quantity. It has
many important properties. For example, suppose M is diagonalizable, under the basis of eigen-
vectors (v1, v2, . . . , vn)with corresponding eigenvalues (λ1, λ2, . . . , λn), then det(M) is the product
λ1λ2 · · · λn. The determinant can be computed efficiently, for example, by Gaussian elimination,
even for matrices that are not diagonalizable; interestingly, the claim that Gaussian elimination is
efficient can be established by considering certain determinants that arise in the course of Gaussian
elimination.
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Returning to our discussion on volumes, the of a body A is transformed to a body B under the
transformation φ, then

vol(B) = |det(φ)| vol(A).

2 Fields

Most of the time, we would be dealing with vectors where the coefficients come from familiar
“fields” such as the real numbers (R), rational numbers (Q) or complex numbers (C).

What is a field?

Afield F is just a set (of “numbers”)wherewe canmeaningfully add, subtract, multiply and
divide (by any “nonzero” element). In other words, these are sets of elements that behave
like the familiar fields like R, Q, C etc.

Formally, a field is defined as follows.
Definition 2.1 (Field). A field is specified by a set of elements F and two binary operations+ : F×F → F

and × : : F × F → F that satisfy the following properties.

Addition and multiplication are commutative: For any pair of elements a, b ∈ F, we have a + b =

b + a and a × b = b × a.

Contains ‘zero’ and ‘one’: There is a unique element in F, called the ‘zero’ element, denoted by 0 that
satisfies

a + 0 = 0 + a = a for all a ∈ F.

The field also contains a unique element, called the ‘one‘ element denoted by 1, that satisfies

a × 1 = 1 × a = a for all a ∈ F.

Distributivity: For any a, b, c ∈ F, we have a × (b + c) = (a × b) + (a × c).

Subtraction and division: For every element a ∈ F, there is a unique element called (−a) ∈ F such that
a + (−a) = 0. Similarly, for every 0 ̸= a ∈ F, there is a unique element called a−1 ∈ F such that
a × a−1 = 1. We will use a − b and a/b as shorthand for a + (−b) and a × b−1 respectively.

♢

Of course, rationals (Q), reals (R) and complex numbers (C) form fields. But here is an exam-
ple of an unusual field:

Q[
√

2] =
{

a + b
√

2 : a, b ∈ Q
}

.
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Of course, it is quite clear that the set is closed under the usual addition and multiplication:

(a + b
√

2) + (c + d
√

2) = (a + c) + (b + d)
√

2,

(a + b
√

2)× (c + d
√

2) = (ac + 2bd) + (ad + bc)
√

2.

The only nontrivial fact is that 1/(a + b
√

2) can also be expressed as c + d
√

2 for some rational
numbers c and d. And this true because

1
a + b

√
2
=

1
a + b

√
2
· a − b

√
2

a − b
√

2
=

(
a

a2 − 2b2

)
−

(
b

a2 − 2b2

)√
2.

All of the fields we have discussed so far have infinitely many elements in them. But turns out,
there are fields that have finitely many elements in them and these are called finite fields.

2.1 Finite fields

Here is an example with just five elements that we will refer to as {0, 1, 2, 3, 4}:

+ 0 1 2 3 4
0 0 1 2 3 4
1 1 2 3 4 0
2 2 3 4 0 1
3 3 4 0 1 2
4 4 0 1 2 3

× 0 1 2 3 4
0 0 0 0 0 0
1 0 1 2 3 4
2 0 2 4 1 3
3 0 3 1 4 2
4 0 4 3 2 1

The abovefield is calledF5 = {0, 1, 2, 3, 4}, and in factwe can create a similar fieldFp = {0, 1, 2, . . . , p − 1}
for any prime p. These fields are created using modular arithmetic and can be succinctly described
as follows.

Prime fields

To add two elements of Fp := {0, 1, 2, . . . , p − 1}, just add the elements as integers and
output the remainder of the sum when divided by p.
Similarly, to multiply elements of Fp := {0, 1, 2, . . . , p − 1}, just multiply the elements and
output the remainder when divided by p.

Often, the notation a ≡ b mod p is used to denote that “a and b leave the same remainder when
divided by p”, which is equivalent to stating that p divides a− b. And (a mod p) is sometimes used
to refer to remainderwhendivided by p, which is also the unique element b ∈ {0, 1, . . . , p − 1} such
that a ≡ b mod p.

It can be easily seen that (−a) is nothing but the element (p − a) mod p ∈ Fp. However, it is
perhaps surprising that every 0 ̸= a ∈ Fp has a multiplicative inverse a−1 ∈ Fp (the fact that p was
a prime is important here).
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Fact 2.2. Let p be any prime. For any a ∈ {1, 2, . . . , p − 1}, there is a unique b ∈ {1, 2, . . . , p − 1} such
that ab ≡ 1 mod p.

Now that we have these prime fields, we can also talk about vector spaces where the coefficients
are from Fp instead since we can now meaningfully add, subtract and scale vectors.

Other finite fields

It turns out that for any prime p, the above field Fp is the only field of size p (up to calling elements
by different names (also known as ’isomorphisms’)). Also, for any prime p and a positive integer
r > 0, there is also a unique field Fpr consisting of exactly pr elements (and this is NOT just addition
and multiplication modulo pr). Not only that, these are the only finite fields possible. We’ll just
write down the addition and multiplication table for F4 = {0, 1, a, b} as an example:

+ 0 1 a b
0 0 1 a b
1 1 0 b a
a a b 0 1
b b a 1 0

× 0 1 a b
0 0 0 0 0
1 0 1 a b
a 0 a b 1
b 0 b 1 a

3 Probability

Let us start with some basic definitions: given a finite set Ω, a probability distribution on Ω is an
assignment of non-negative “weights” to the elements of Ω, so that the weights sum up to 1. For-
mally, we can write this is a function µ : Ω → [0, 1], such that µ(x) ≥ 0 for each x ∈ Ω, and such
that ∑x∈Ω p(x) = 1. A particularly important special case is of the uniform distribution, where p(x)
is the same for each x ∈ Ω.

Given a probability distribution, we can think of any function on Ω as a random variable. The
simplest and most important case is when the function is the identity function: x 7→ x for each x ∈
X. In that case we say that the random variable “X is sampled according to µ” or has “probability
distribution µ” if it takes the value x ∈ Ω with probability µ(x). This is denoted as X ∼ µ and also
as

Pr
X∼µ

[X = x] = µ(x) for all x ∈ Ω. (3.1)

More generally,

Pr
X∼µ

[X ∈ A] = µ(A) for all A ⊆ Ω, (3.2)

where

µ(A) ··= ∑
x∈A

µ(x). (3.3)
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Consider now a random variable Y taking values in R: it can then be seen as a function from Ω to
R. We then define

Pr
µ
[Y = r] ··= µ ({x ∈ Ω | Y(x) = r}) . (3.4)

The expectation of mean of such a random variable is then defined as

E
µ
[Y] ··= ∑

x∈X
µ(x)Y(x). (3.5)

The µ in the subscript in the definitions in eqs. (3.3) and (3.5) denotes the underlying probability
distribution, and we will usually drop it when the distribution under discussion is clear from the
context.

Finally, we define the conditional probability, the probability that “X is in set A, conditioned on or
given the fact that it is known to be in set B” as

Pr
µ
[X ∈ A | X ∈ B] ··=

Prµ[X ∈ A ∩ B]
Prµ[X ∈ B]

. (3.6)

Another important quantity is the variance, which can be a seen as a measure of how much a
random variable “varies” from its mean. It is defined as

Var
µ
[X] ··= E

µ
[(X − M)]2] = E

µ
[X2]− M2, (3.7)

where M ··= Eµ[X].

3.1 Continuous distributions

We will also need to deal with cases where Ω is not a finite set. This might seem straightforward,
but it easy to run into logical problems if one is not careful. To see why, try the following: what
should it mean to sample a real number from the “uniform distribution” over the real numbers?

For our purposes, we can avoid such logical pitfalls by restricting to a special but important
class of probability distributions. Let Ω be Rd, where d is a positive integer. By a probability density,
we will mean a non-negative function f “which we can integrate”, and whose integral over all of
Ω is 1: ∫

x∈Rd

f (x) dx = 1. (3.8)

Formalizing the phrase “which we can integrate” can be a bit tricky, and we will again avoid
some of the technical apparatus needed for that formalization by restricting our attention to the
case when f is a continuous function.
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With thiswe candefineprobabilities and expectationswith respect to f , as in eqs. (3.2) and (3.5).
For any set A, the indicator function IA is defined as Ix(x) ··= 1 when x ∈ A and IA(x) = 0 when
x ̸∈ A. We then have

Pr
f
[A] =

∫
x∈Rd

IA(x) f (x) dx, and (3.9)

E
f
[Y] =

∫
x∈Rd

Y(x) f (x) dx, and (3.10)

(Again, this cannot be done for “all” sets A and all functions Y. However we will only be dealing
with sets where the integrations in eqs. (3.9) and (3.10) are well defined.)

The definition of conditional probabilities given in eq. (3.6) carries over to this setting as it is,
after replacing the definition of probability in eq. (3.2) by the one in eq. (3.9).

Bounded densities An obvious but often useful manipulation one can do with probability den-
sities is to use lower and upper bounds on densities to upper and lower bound probabilities. As
an exercise for this, try the following estimate.

Bounding probabilities with densities

Let X be a real valued random variable with density f . Assume that f (x) ≥ 1
10 for all x

satisfying 1 ≤ x ≤ 3, and that f (x) ≤ 2
10 for all x satisfying 2 ≤ x ≤ 5. Show that

1. Pr[X > 3] ≤ 8
10 .

2. 1
10 ≤ Pr[2 ≤ X ≤ 3] ≤ 2

10 .

3. Pr[X > 3 | X ≥ 2] ≤ 8
9 .

3.2 Normal distribution

An important continuous distribution is the Gaussian or Normal distribution. The standard normal
distribution distribution over R is given by the density

ν(x) ··=
1√
2π

exp(−x2/2). (3.11)

It can be checked that ν integrates to 1 (this does require a trick, but you should try it if you have
not seen it before and are familiar with change of variables while integrating in high dimensions).
Also, it can be checked that if X has density ν then

E
ν
[X] = 0 and Var

ν
[X] = 1. (3.12)
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In general, given real numbers M and σ > 0, we say that X ∼ N (M, σ2) to mean that X has the
density

νM,σ2(x) ··=
1
σ

ν

(
x − M

σ

)
=

1√
2πσ2

exp
(
− (x − M)2

2σ2

)
. (3.13)

It can be checked that if X ∼ N (a, σ2) then

E[X] = M and Var[X] = σ2, (3.14)

and also that Z ··= (X − M)/σ satisfies Z ∼ N (0, 1), i.e., Z is a standard normal random variable.

3.3 Some resources

For an introduction to probability and its applications, please see the textbook by Grinstead and
Snell, made available for free by the authors through the Chance Project here. A classic textbook
is An introduction to probability theory and its applications, by William Feller, which has a relatively
affordable student edition available.

For more background on measure theoretic foundations, see the book Probability: Theory and
Examples by Rick Durrett: a draft version is available for free from the author’s webpage. For
several algorithmic applications, see the textbook Foundations of Data Science by Blum, Hopcroft
andKannan. A draft is available from thewebpage of one of the authors, and a relatively affordable
edition has been published by Hindustan Book Agency.
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